Changes

Jump to: navigation, search

Team Sonic

3,053 bytes added, 19:27, 8 March 2013
Assignment 2
-->
=== Assignment 2 ===
 
=====Background=====
In assignment 1 we identified the 'RCTAlgorithmBackprojection' function located in the dll/shared library was taking up virtually 100% of the execution time. Our goal for this assignment was to off-load that logic to the GPU using cuda api, leaving everything else intact.
=====Summary=====
The work we did can be separated in to three basic steps:
#Compile base software from source (RabbitCTRunner.exe and dll)
#Write cuda kernel to replace 'RCTAlgorithmBackprojection' in dll
#Integrate cuda kernel in to RabbitCTRunner
 
======Kernel======
 
<pre>
 
__global__
 
void Backprojection(float * gpu_matrix_result, RabbitCtGlobalData * r) // problem_size is r.L
 
{
unsigned int L = r->L;
float O_L = r->O_L;
float R_L = r->R_L;
double* A_n = r->A_n;
//float* I_n = r->I_n;
//float* f_L = r->f_L;
// for optimization, put these ^ in shared memory.
 
//s_rcgd = r;
 
unsigned int col = blockDim.x * blockIdx.x + threadIdx.x; // this is like the original "i" iterator
unsigned int row = blockDim.y * blockIdx.y + threadIdx.y; // this is like the original "j" iterator
unsigned int depth = blockDim.z * blockIdx.z + threadIdx.z; // this is like the original "k" iterator
 
if (row < L && col < L && depth < L)
{
unsigned int final_index = L * L * depth + L * row + col;
double z = O_L + (double)depth * R_L;
double y = O_L + (double)row * R_L;
double x = O_L + (double)col * R_L;
 
double w_n = A_n[2] * x + A_n[5] * y + A_n[8] * z + A_n[11];
double u_n = (A_n[0] * x + A_n[3] * y + A_n[6] * z + A_n[9] ) / w_n; // inline this
double v_n = (A_n[1] * x + A_n[4] * y + A_n[7] * z + A_n[10]) / w_n; // inline this
 
// p_hat_n inlined:
int i = (int)u_n;
int j = (int)v_n;
double alpha = u_n - (int)u_n;
double beta = v_n - (int)v_n;
double p_hat_n_result =
(1.0 - alpha) * (1.0 - beta) * p_n(i , j )
+ alpha * (1.0 - beta) * p_n(i+1, j )
+ (1.0 - alpha) * beta * p_n(i , j+1)
+ alpha * beta * p_n(i+1, j+1);
///////
 
gpu_matrix_result[final_index] += (float)(1.0 / (w_n * w_n) * p_hat_n_result);
 
 
// this call calculates the index value twice because of +=
}
}
</pre>
======Memory Allocation======
<pre>
#ifdef GPU
float * gpu_matrix;
cudaMalloc((void**)&gpu_matrix, numel_vol * sizeof(float));
cudaMemcpy(gpu_matrix, rctgdata.f_L, numel_vol * sizeof(float), cudaMemcpyHostToDevice);
const int threads_per_block = 16;
const int num_of_blocks = (problem_size + threads_per_block - 1) / threads_per_block;
dim3 block(threads_per_block, threads_per_block, threads_per_block);
dim3 grid(num_of_blocks, num_of_blocks, num_of_blocks);
#endif
</pre>
======Execution Config======
<pre>
#ifdef GPU
Backprojection<<<grid, block>>>(gpu_matrix, &rctgdata);
#else
</pre>
 
=== Assignment 3 ===

Navigation menu