Changes

Jump to: navigation, search

Lzw.h

16,697 bytes added, 15:55, 20 February 2013
Created page with '<pre> #ifndef UPRIGHT_LZW_H #define UPRIGHT_LZW_H /* LZW.h by N.A.Bozinis @ 19/01/2010 08:55:52 * -----------------------------------------------------------------------…'
<pre>

#ifndef UPRIGHT_LZW_H

#define UPRIGHT_LZW_H





/* LZW.h by N.A.Bozinis @ 19/01/2010 08:55:52

* ----------------------------------------------------------------------------------

*

* Plain C++ port of LZW compression algorithm and code originally (c) Mark R. Nelson

* http://marknelson.us/1989/10/01/lzw-data-compression

* Variable bit length encoding idea and code originally by Michael Dipperstein

* http://michael.dipperstein.com/lzw

*

* There are a lot of compression classes floating around but most are based on the

* zlib (zip/unzip) library, which is good but a bit of overkill for simple and small

* code. LZW combines decent compression ratios with very small code footprint. If

* you need something more powerful here are a few resources:

*

* http://www.codeproject.com/KB/files/zip_utils.aspx

* http://www.codeproject.com/KB/cpp/xzipunzip.aspx

* http://www.codeproject.com/KB/cpp/ChauMemzip.aspx

*

* Microsoft types can check the CAB protocol that is available in all windows:

* http://www.codeproject.com/KB/files/CABCompressExtract.aspx

* http://msdn.microsoft.com/en-us/library/bb417343.aspx

*

*/



#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <string.h>

#include <assert.h>

#define ATLASSERT assert



/* NOTE: function and variable names left as much as possible matching the original

LZW.c by Mark, naturally bundled in classes to get rid of static/globals etc

*/



#define MIN_CODE_LEN 9 /* min # bits in a code word */

#define MAX_CODE_LEN 20 /* max # bits in a code word */

#define CURRENT_MAX_CODES(x) (1UL << (x))



#define FIRST_CODE (1 << CHAR_BIT) /* value of 1st string code */



#if (MIN_CODE_LEN <= CHAR_BIT)

#error Code words must be larger than 1 character

#endif



#if (MAX_CODE_LEN >= 25)

#error Code words must fit in an integer

#endif





/* VARIABLE BIT LENGTH ENCODING

* Instead of using a fixed number of bits for code words, we start at 9 (=MIN_CODE_LEN)

* and go up to BITS (<=MAX_CODE_LEN) so that small files are tightly packed and larger

* files are fine too. The BITS constant determines the maximum hash table size. For 18

* this means 250KB runtime table size which is enough for files ~4MB.

* There is no problem for files larger than that; if we run out of table space for new

* codes then the same codes are emitted (uncompressed obviously)

*/



#define BITS 17 /* Setting the number of bits to 12, 13*/

#define HASHING_SHIFT (BITS-8) /* or 14 affects several constants. */

#define MAX_VALUE (1 << BITS) - 1 /* Note that MS-DOS machines need to */

#define MAX_CODE MAX_VALUE - 1 /* compile their code in large model if*/

/* 14 bits are selected. */



#if BITS == 20

#define TABLE_SIZE 1048583

#elif BITS == 19

#define TABLE_SIZE 524309

#elif BITS == 18

#define TABLE_SIZE 262147

#elif BITS == 17

#define TABLE_SIZE 131101

#elif BITS == 16

#define TABLE_SIZE 65543

#elif BITS == 15

#define TABLE_SIZE 32797

#elif BITS == 14

#define TABLE_SIZE 18041 /* The string table size needs to be a */

/* prime number that is somewhat larger*/

#elif BITS == 13 /* than 2**BITS. */

#define TABLE_SIZE 9029

#elif BITS == 12

#define TABLE_SIZE 5021

#else

#error define smaller or bigger table sizes

#endif



#if (TABLE_SIZE <= MAX_VALUE)

#error your prime numbers need attention

#endif



#if (BITS > MAX_CODE_LEN)

#error BITS can only go up to a maximum

#endif





/*

This class does most of the job, except reading source and writing the compressed data

A derived class does that so that there's flexibility to read either from files or memory

*/



class CLZWImpl {

protected:

int *code_value; /* This is the code value array */

unsigned int *prefix_code; /* This array holds the prefix codes */

unsigned char *append_character; /* This array holds the appended chars */

unsigned char decode_stack[4000]; /* This array holds the decoded string */

unsigned char CUR_BITS; /* ~nab: added for variable bit size */

/* we are processing bits but in the end of the day we do I/O in bytes */

int input_bit_count, output_bit_count;

unsigned long input_bit_buffer, output_bit_buffer;



public:

CLZWImpl() {

code_value = 0;

prefix_code = 0;

append_character = 0;

}



~CLZWImpl() {

if(code_value)

free(code_value);

if(prefix_code)

free(prefix_code);

if(append_character)

free(append_character);

}



int get_bits() { return CUR_BITS; }



protected:

int Init() {

ATLASSERT(!code_value); /* call just once */



code_value=(int*)malloc(TABLE_SIZE*sizeof(int));

prefix_code=(unsigned int*)malloc(TABLE_SIZE*sizeof(unsigned int));

append_character=(unsigned char*)malloc(TABLE_SIZE*sizeof(unsigned char));



return code_value != 0 && prefix_code != 0 && append_character != 0;

}



/* override these 4: read a byte from source */

virtual int getc_src() = 0;

/* read a byte from compressed source (during expansion) and write to compressed output */

virtual int getc_comp() = 0;

/* write a byte to compressed output */

virtual int putc_comp(int ch) = 0;

/* write a byte to expanded output */

virtual int putc_out(int ch) = 0;



/*

** This is the compression routine. The code should be a fairly close

** match to the algorithm accompanying the article.

**

*/



void compress()

{

unsigned int next_code;

unsigned int character;

unsigned int string_code;

unsigned int index;

unsigned int bit_limit;

int i;



ATLASSERT(code_value); /* initialized? */



CUR_BITS = MIN_CODE_LEN;

bit_limit = CURRENT_MAX_CODES(CUR_BITS) - 1;

output_bit_count=0;

output_bit_buffer=0L;



ATLASSERT(256==FIRST_CODE);

next_code=FIRST_CODE; /* Next code is the next available string code*/

for (i=0;i<TABLE_SIZE;i++) /* Clear out the string table before starting */

code_value[i]=-1;



string_code=getc_src(); /* Get the first code */

if(-1 == string_code)

return; /* empty file or error */



/*

** This is the main loop where it all happens. This loop runs util all of

** the input has been exhausted. Note that it stops adding codes to the

** table after all of the possible codes have been defined.

*/

while ((character=getc_src()) != -1)

{

index=find_match(string_code,character);/* See if the string is in */

if (code_value[index] != -1) /* the table. If it is, */

string_code=code_value[index]; /* get the code value. If */

else /* the string is not in the*/

{ /* table, try to add it. */

if (next_code <= MAX_CODE)

{

code_value[index]=next_code++;

prefix_code[index]=string_code;

append_character[index]=character;

}



/* are we using enough bits to write out this code word? */

if(string_code >= bit_limit && CUR_BITS < BITS)

{

/* mark need for bigger code word with all ones */

output_code(bit_limit);

CUR_BITS++;

bit_limit = (CURRENT_MAX_CODES(CUR_BITS) - 1);

}



ATLASSERT(string_code < bit_limit);



output_code(string_code); /* When a string is found */

string_code=character; /* that is not in the table*/

} /* I output the last string*/

} /* after adding the new one*/

/*

** End of the main loop.

*/



output_code(string_code); /* Output the last code */

output_code(-1); /* This code flushes the output buffer*/

}



/*

** This is the hashing routine. It tries to find a match for the prefix+char

** string in the string table. If it finds it, the index is returned. If

** the string is not found, the first available index in the string table is

** returned instead.

*/

int find_match(unsigned int hash_prefix,unsigned int hash_character)

{

int index;

int offset;



index = (hash_character << HASHING_SHIFT) ^ hash_prefix;

if (index == 0)

offset = 1;

else

offset = TABLE_SIZE - index;

while (1)

{

if (code_value[index] == -1)

return(index);

if (prefix_code[index] == hash_prefix &&

append_character[index] == hash_character)

return(index);

index -= offset;

if (index < 0)

index += TABLE_SIZE;

}

}



/*

** This is the expansion routine. It takes an LZW format file, and expands

** it to an output file. The code here should be a fairly close match to

** the algorithm in the accompanying article.

*/



void expand()

{

unsigned int next_code;

unsigned int new_code;

unsigned int old_code;

int character;

unsigned char *string;

unsigned int bit_limit;



ATLASSERT(code_value); /* initialized? */



CUR_BITS = MIN_CODE_LEN;

bit_limit = CURRENT_MAX_CODES(CUR_BITS) - 1;

input_bit_count=0;

input_bit_buffer=0L;



// @@@ what if we pass uncompressed file to decode?



next_code=FIRST_CODE; /* This is the next available code to define */



old_code=input_code(); /* Read in the first code, initialize the */

if(-1 == old_code)

return; /* read error? */

character=old_code; /* character variable, and send the first */

if(putc_out(old_code)==-1) /* code to the output file */

return; /* write error */

/*

** This is the main expansion loop. It reads in characters from the LZW file

** until it sees the special code used to inidicate the end of the data.

*/

while ((new_code=input_code()) != (-1))

{

/* look for code length increase marker */

if(bit_limit == new_code && CUR_BITS < BITS)

{

CUR_BITS++;

bit_limit = CURRENT_MAX_CODES(CUR_BITS) - 1;



new_code=input_code();

ATLASSERT(new_code != -1); /* must be read error? */

if(new_code == -1)

break;

}



ATLASSERT(new_code < bit_limit);



/*

** This code checks for the special STRING+CHARACTER+STRING+CHARACTER+STRING

** case which generates an undefined code. It handles it by decoding

** the last code, and adding a single character to the end of the decode string.

*/

if (new_code>=next_code)

{

*decode_stack=character;

string=decode_string(decode_stack+1,old_code);

}

/*

** Otherwise we do a straight decode of the new code.

*/

else

string=decode_string(decode_stack,new_code);

/*

** Now we output the decoded string in reverse order.

*/

character=*string;

while (string >= decode_stack)

putc_out(*string--);

/*

** Finally, if possible, add a new code to the string table.

*/

if (next_code <= MAX_CODE)

{

prefix_code[next_code]=old_code;

append_character[next_code]=character;

next_code++;

}

old_code=new_code;

}

}



/*

** This routine simply decodes a string from the string table, storing

** it in a buffer. The buffer can then be output in reverse order by

** the expansion program.

*/

/* ~nab: these char* aren't a risk for unicode; we are reading bytes */

unsigned char *decode_string(unsigned char *buffer,unsigned int code)

{

int i;



i=0;

while (code >= FIRST_CODE)

{

*buffer++ = append_character[code];

code=prefix_code[code];

i++;

ATLASSERT(i < sizeof(decode_stack)); /* buffer overrun if it blows, increase stack size! */

}

*buffer=code;

return(buffer);

}



/*

** The following two routines are used to output variable length

** codes. They are written strictly for clarity, and are not

** particularyl efficient.



~nab: there's room for improvement in these I/O functions eg work in DWORDS instead of bytes

*/



unsigned int input_code()

{

int c;

unsigned int return_value;

//static int input_bit_count=0;

//static unsigned long input_bit_buffer=0L;



while (input_bit_count <= 24)

{

if ((c = getc_comp()) == -1)

break;



input_bit_buffer |=

(unsigned long) c << (24-input_bit_count);

input_bit_count += 8;

}



if(input_bit_count < CUR_BITS) {

ATLASSERT(!input_bit_buffer);

return -1; /* EOF */

}



return_value=input_bit_buffer >> (32-CUR_BITS);

input_bit_buffer <<= CUR_BITS;

input_bit_count -= CUR_BITS;



ATLASSERT(return_value < (1UL << CUR_BITS));

return(return_value);

}



/* bits are written outside normal byte boundaries, hence the need for keeping old values */

void output_code(unsigned int code)

{

//static int output_bit_count=0;

//static unsigned long output_bit_buffer=0L;



ATLASSERT(output_bit_count < 8); /* leftovers */

ATLASSERT(CUR_BITS + output_bit_count <= 32);

/*codes <256 are possible for single characters, zero bytes etc*/



if(-1 == code) {

/* pad remaining zeros and flush the last byte */

if(output_bit_count) {

output_bit_buffer >>= 24;

ATLASSERT((output_bit_buffer & 0xFF) == output_bit_buffer);

putc_comp(output_bit_buffer);



output_bit_count = 0;

output_bit_buffer = 0; /* in case some eejit calls us again */

}



return;

}



ATLASSERT(code < (1UL << CUR_BITS));



/* sends new bytes near the top (MSB) */

output_bit_buffer |= (unsigned long) code << (32-CUR_BITS-output_bit_count);

output_bit_count += CUR_BITS;

while (output_bit_count >= 8)

{

/* no check for error but if there was a problem we'd know from the time we wrote the identifier */

putc_comp(output_bit_buffer >> 24);

output_bit_buffer <<= 8;

output_bit_count -= 8;

}

}

}; /* CLZWImpl */



/* example derived class using C buffered I/O functions */

class CLZWCompressFile : public CLZWImpl {

public:

CLZWCompressFile() {

io_file = 0;

lzw_file = 0;

};



~CLZWCompressFile() {

ATLASSERT(!io_file);

ATLASSERT(!lzw_file);

};



int AnyIOErrors() {return io_error; }



// @@@ these char* should be changed for unicode builds

unsigned int Compress(char* input_file_name, char* to_name)

{

ATLASSERT(input_file_name && *input_file_name);

ATLASSERT(to_name && *to_name);

ATLASSERT(strcmp(to_name, input_file_name));



io_error = 1;



if(!code_value)

if(!Init())

return 0; /* rare memory error */



u_comp = 0;

u_io = 0;

io_file=fopen(input_file_name,"rb");

if(io_file) {

lzw_file=fopen(to_name,"wb");

if(lzw_file) {

/* write LZW identifier L+starting bytes */

putc('L', lzw_file);

if(putc(MIN_CODE_LEN, lzw_file) == MIN_CODE_LEN) {

compress();

io_error = ferror(lzw_file) || ferror(io_file);

if(!io_error)

ATLASSERT(u_comp <= u_io); /* this is bound to bomb every now and then, no compression! */

}

fclose(lzw_file);

lzw_file = 0;

}



fclose(io_file);

io_file = 0;

}



return u_comp;

}



unsigned int Expand(char* lzw_name, char* to_name)

{

ATLASSERT(lzw_name && *lzw_name);

ATLASSERT(to_name && *to_name);

ATLASSERT(strcmp(to_name, lzw_name));



io_error = 1;



if(!code_value)

if(!Init())

return 0; /* rare memory error */



u_comp = 0;

u_io = 0;

lzw_file=fopen(lzw_name,"rb");

if(lzw_file) {

/* check LZW identifier L+starting bytes */

int ch1 = getc(lzw_file);

int ch2 = getc(lzw_file);

if('L' == ch1 && MIN_CODE_LEN==ch2) {

io_file=fopen(to_name,"wb");

if(io_file) {

expand();

io_error = ferror(lzw_file) || ferror(io_file);



fclose(io_file);

io_file = 0;

}

}



fclose(lzw_file);

lzw_file = 0;

}



return u_io;

}



protected:

/* -1 return indicates either EOF or some IO error */

virtual int getc_src() {

ATLASSERT(io_file);

int ch = getc(io_file);

if(EOF == ch)

return -1;



u_io++;

return ch;

}

virtual int getc_comp() {

ATLASSERT(lzw_file);

int ch = getc(lzw_file);

if(EOF == ch)

return -1;



u_comp++;

return ch;

}

virtual int putc_comp(int ch) {

ATLASSERT(lzw_file);

ATLASSERT(ch >= 0 && ch < 256);

int ret = putc(ch, lzw_file);



if(ret != EOF) {

ATLASSERT(ret == ch);

u_comp++;

}

else

ret = -1;



return ret;

}

virtual int putc_out(int ch) {

ATLASSERT(io_file);

ATLASSERT(ch >= 0 && ch < 256);

int ret = putc(ch, io_file);



if(ret != EOF)

u_io++;

else

ret = -1;



return ret;

}



FILE* io_file;

FILE *lzw_file;

int io_error;

public:

unsigned long u_io, u_comp; /* bytes read and written */

};



// @@@ could have a generic one on IStream, CreateStreamOnHGlobal/SHCreateStreamOnFile



#endif /* UPRIGHT_LZW_H */



</pre>

Navigation menu