33
edits
Changes
→Progress
== Progress ==
=== Assignment 1 ===
====Sudoku Brute Force Solver====
I decided to profile a simple brute force Sudoku solver, found here (https://github.com/regehr/sudoku). The solver uses a simple back tracking algorithm, inserting possible values into cells, iterating through the puzzles thousands of times, until it eventually produces an answer which does not violate any of the rules of Sudoku. As such the solver runs at the same speed regardless of the human difficulty rating, able to solve easy and 'insane' level puzzles at the same speed. The solver also works independent of the ratio between clues and white space, producing quick results with even the most sparsely populated puzzles.As such the following run of the program uses a puzzle which is specifically made to play against the back tracking algorithm and provides maximum time for the solver.
I believe that if a GPU was used to enhance this program one would see a great increase of speed. All of the check functions essentially do the same thing, iterating through possible inserted values for any that violate the rules. If one is able to unload all of these iterations onto the GPU then there should be a corresponding increase in speed.
====Christopher Ginac Image Processing Library====
I decided to profile a single user created image processing library written by Christopher Ginac, you can follow his post of the library [https://www.dreamincode.net/forums/topic/76816-image-processing-tutorial/ here]. His library enables the user to play around with .PGM image formats. If given the right parameters, users have the following options:
It seems most of our time in this part of the code is spent assigning our enlarged image to the now one, and also creating our image object in the first place. I think if we were to somehow use a GPU for this process, we would see an decrease in run-time for this part of the library. Also, there also seems to be room for improvement on the very 'Image::enlargeImage' function itself. I feel like by loading said functionality onto thje GPU, we can reduce it's 0.76s to something even lower.
====Merge Sort Algorithm====
I decide to profile a vector merge sort algorithm. A merge sort is based on a based on divide and conquer technique which recursively breaks down a problem into two or more sub-problems of the same or related types. When these become simple enough to be solved directly the sub-problems are then combined to give a solution to the original problem. It first divides the array into equal halves and then combines them in a sorted manner. Due to this type of sort being broken into equal parts, I thought that it would be perfect for a GPU to be able to accelerate the process. With the sort being broken down into multiple chunks and then sent to the GPU it will be able to accomplish its task more efficiently. I was able to find the source code [https://codereview.stackexchange.com/questions/167680/merge-sort-implementation-with-vectors/ here].