Changes

Jump to: navigation, search

SPO600 Algorithm Selection Lab

354 bytes added, 12:56, 3 February 2017
no edit summary
== Lab 5 ==
1. Write two different algorithmic approaches to adjusting the volume of a sequence of sound samples, using different algorithms. In each case, you should take a series of signed 16-bit integers representing sound waveform samples and multiply each by a floating point "volume scaling factor" in the range 0.000-1.000. It is recommended that one approach be the naive multiplication of the sample by the volume scaling factor, and the second approach be dramatically different (e.g., table lookup, multiplication by bit-shifting, memoization, or another approach).
2. Test which approach is faster. Control the variables and use a large run of data (at least hundreds millions of samples). Use both [[SPO600 Servers|x86 and AArch64]] systems for testing - DO NOT compare results between the architectures (because they are different classes of systems) but DO compare the relative performance of the algorithms on each architecture. For example, you might note that "Algorithm I is NN% faster than Algorithm II on Architecture A, but NN% slower on Architecture B".
* You may need to run a very large amount of sample data through the function to be able to detect its performance.
* If you do not use the output from your calculation (e.g., do something with the output array), the compiler may recognize that, and remove the code you're trying to test. Be sure to process the results in some way so that the optimizer preserves the code you want to test. It is a good idea to calculate some sort of verification value to ensure that both approaches generate the same results.
* You can test using actual sound data (see the tips section, below) or using generated data. If you're generating data, it is best to use a pseudo-random number generator which is seeded with the same value every time, so that each run processes the same data.
* Be aware of what other tasks the system is handling during your test run.
==== Analyzing Results ====

Navigation menu