Team Armour

From CDOT Wiki
Revision as of 21:59, 30 November 2011 by Cwtseng (talk | contribs)
Jump to: navigation, search


BTH740 | Weekly Schedule | Research Projects | Research Essay | Student Resources

Team Armour

Mail All

Thesis Statement

Thesis

"There are challenges in toushcreen technology that other less intuitive methods of input have inherently overcome"

Older Version - "Touch screen technology has improved the interactions between human and computers by eliminating the middleware"

Keywords

Direct Human-Machine Interaction; Eliminating Middleware; Touch Screen;

Research Writing (Rough Draft)

Abstract

Touch screen have exploded into the consumer technology market over the past few years and aims at replacing the traditional input device like mouse and keyboard. This new technology allows users to operate a technological device in a more natural way. However, touch screen technology have inherited drawbacks that have “sub-consciously” been solved in other less intuitive methods of input, such as low haptic feedback. These problems could be partially overcome by implementing vibrations or audio feedback to help provide a better feel.

A small survey was conducted to various users of touch screen technology to gather their comfort level of using such technology. The results indicate that (a) a lot of users own or use some form of touch screen technology in their life, (b) they also feel additional haptic feedback to let the user knows that a button was pressed, and (c) different, more efficient layout of the application would help reduce error rate. Various touch screen benefits and their flaws are discussed.

Introduction

Touch-Screen's Effort To Make Communication More Natural

The human touch is possibly one of the most intimate acts of human sensuality. Touch is one of the ways human explore the world around them as an infant. The action of touching can be emotive and sooth another individual or an act of trust. Thus, touch screen technology is an effort by researchers to enable humans to interact directly and more intimately with machines. Due to the recent explosion of technological advancements in the mass consumer field, touch screen technology have taken over multiple technological products in the consumer market such as mobile devices, interactive portable advertisement boards, point-of-sale terminals and so on. Such touch screen technologies aims at eliminating the use of traditional, less intuitive input devices and provide a more natural interaction between humans and computers. Through natural interaction, users can gain quick and fast access to digital information from technological devices while maintaining similar or increased level of usability as compared to other devices like the mouse and keyboard.

By using traditional primitive input technologies, users interact with computers through a form of middleware. This means that when a user types on a keyboard or clicks a mouse, the corresponding “action” is then replicated on the screen. However, researchers argues that the human brain is not wired to interact with devices through single-touch devices or other such primitive forms of touch-screen technology and that humans interact with other object directly and more intuitively. All these research efforts aim giving users the ability where “two fingers can stretch or shrink an image. A single touch opens a program. A flick of a finger scrolls or turns a page” (Bragg, Roy).

Roy Bragg noted in his post that many industry leaders and analyst believe that as more and more innovative systems evolves; it will revolutionize how humans can interact with computers. To help users continue to achieve natural interaction with technologies, researchers managed to implement the features of multi-touch, where multiple users can interact on the same screen, as well as Microsoft’s PixelSense™. With PixelSense, every pixels on the screen is converted to act as a camera sensor, thereby, it is capable to record images as well a human touch. Since the introduction of the Apple’s iPhone, it had set a precedent as to how future input technologies would evolve in its effort try to help user feel and interact digital objects through different gestures.

Conclusion

Bibliography

AMEInfo "HP redefines touchscreen PC experience with new ergonomic design"

Davis, Cyndi "Will touchscreen technology eliminate Ergonomic risk in computing and gaming?"

Bragg, Roy "Touch-Screen success would make PC mouse obsolete"

Ergonomics made easy"Ergonomic Keyboards"

Moren, Dan "Typing on the iPad"

Nintendo America "Nintendo Wii U"

Saffer, Dan "Activity Zones for touchscreen tables and phones"

Swann, Melanie "Ergonomics of Touch Screens"

Tannen, Rob "Designing *for humans"

Hsinfu Huang Li-Hao Chen "Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon"

Michael Thornlund "Gesture Analyzing"

Tim Syth "Touching Technology"

Ashlee Vance "Haptics Adds New Dimensions to Touchscreens"

Immersion Corporation "Improving haptics in mobile"

Research Notes

Research Data

The increasing use of portable devices like smartphones and tablets have driven research for a more efficient user interface. These various research are aimed at helping users gain a quick and fast access to digital information from portable devices while maintaining similar or increased usability as a desktop computer with a mouse and keyboard.

As noted in Roy Bragg's post, touch screen provides a more natural interaction between humans and computers. With multi-touch, it is less time-consuming for a user to access information on the device. Another reason for the advancement of touch screen technology is trying to provide a more natural user interface and similar productivity on smaller devices, which would be infeasible if a keypad is used.

Although huge advancement are made in touch screen technology, they do suffer some various drawback similar to mouse and keyboards. Such drawbacks may result in injuring the user if not user properly.

For example in the paper "Ergonomics of Touch Screens", "the general rule of thumb for a display only machine is to locate the machine in the “optimal viewing area”. However, with a touch screen, not only do optimal viewing area need to be considered, but also the arm position of the users. Without proper screen positioning, repetitive use of touch screen technology can lead to tendonitis, tenosynovitis and carpal tunnel syndrome. In a standing workstation, the upper arms of a user should be in a neutral posture, beside the torso. To accommodate most users, this should be about 105cm – 140cm off the ground. Due to the characteristics of LCD monitors, users that operate a touch device without a proper angle with experience fuzziness and distortion to characters. The optimal viewing angle for any LCD surface is between 30 to 45 degrees".

A study conducted by Immersion corporation on "Haptics for mobile devices" determined that good haptic feedback reduces errors in input radically even if no visual information is provided. It is when no haptic feedback is used that errors in input ramp up dramatically. This is backed up by previous studies that determined that at a very young age, the sense of touch develops very sensitive qualities beyond just the presence and absence of it. The study concludes that the sense of touch can be used as a high bandwidth communication channel. Although devices that came before touchscreen are not very instinctive, they have always provided some form of haptic feedback, even if just by coincidence. The key of a keyboard going up and down, and a mouse being slid provide some information to the use via sense of touch; may that be that key reached its lowest position when being pressed, or that certain movement of the mouse represents the distance of one pixel and not two.

Other Topics

Note: Discussed in earlier stage. No longer used.

  • Motion gesture for mobile phones
  • OLED Phones (fold-able screen)
  • Gesture Recognition in games
  • Brain-computer interaction