Changes

Jump to: navigation, search

Winter 2022 SPO600 Weekly Schedule

1,913 bytes added, 10:42, 6 September 2022
Binary Representation of Data
[[Category:Winter 2022 SPO600]]
This is the schedule and main index page for the [[SPO600]] ''Software Portability and Optimization'' course for Winter 2022.
<!-- {{Admon/important|It's Alive!|This [[SPO600]] weekly schedule will be updated as the course proceeds - dates and content are subject to change. The cells in the summary table will be linked to relevant resources and labs as the course progresses.}}-->
<!-- {{Admon/important|Content being Updated|This page is in the process of being updated from a previous semester's content. It is not yet updated for the current semester. Do not rely on the accuracy of this information until this warning is removed.}} -->
<!-- {{Admon/obsolete|[[Current SPO600 Weekly Schedule]]}} -->
|11||Mar 28||[[#Week 11 - Class I|Project Discussion 3]]||[[#Week 11 - Class II|SVE2 Examples]]||[[#Week 11 Deliverables|Project Stage 1 (March 28), March Blog Posts (March 31)]]
|-
|12||Apr 04||[[#Week 12 - Class I|TBADemo/discussion of SVE 2 Examples]]||[[#Week 12 - Class II|Memory - Cache, NUMA, Observability, BarriersSVE2 Examples Part 2]]||[[#Week 12 Deliverables|Blog about project work]]
|-
|13||Apr 11||[[#Week 13 - Class I|Project DiscussionMemory Systems]]||style="background: #f0f0ff"|Good Friday||[[#Week 13 Deliverables|Blog about project work]]
|-
|14||Apr 18||[[#Week 14 - Class I|Future Directions in Architecture]]||[[#Week 14 - Class II|Project Stage 3]]||[[#Week 14 Deliverables|Project Stage 3, April Blog Posts]]
*** Logically: false or true.
** Binary numbers are resistant to errors, especially when compared to other systems such as analog voltages.
*** To represent the numbers 0-5 10 as an analog electical value, we could use a voltage from 0 - 5 10 volts. However, if we use a long cable, there will be signal loss and the voltage will drop: we could apply 5 10 volts on one end of the cable, but only observe (say) 49.1 volts on the other end of the cable. Alternately, electromagnetic interference from nearby devices could slightly increase the signal.*** If we use instead use the same voltages and cable length to carry a binary signal, where 0 volts == off == "0" and 5 10 volts == on == "1", a signal that had degraded from 5 10 volts to 49.1 volts would still be counted as a "1" and a 0 volt signal with some stray electromagnetic interference presenting as (say) 0.4 volts would still be counted as "0". However, we will need to use multiple bits to carry larger numbers -- either in parallel (multiple wires side-by-side), or sequentially (multiple bits presented over the same wire in sequence).
* Integers
** Integers are the basic building block of binary numbering schemes.
** The most commonly-used floating point formats are defined in the [[IEEE 754]] standard.
** IEEE754 floating point numbers have three parts: a ''sign bit'' (0 for positive, 1 for negative), a ''mantissa'' or ''significand'', and an ''exponent''. The significand has an implied 1 and radix point preceeding the stored value. The exponent is stored as an unsigned integer to which a ''bias'' value has been added; the bias value is 2<sup>(number of exponent bits - 1)</sup> - 1. The floating point value is interpreted in normal cases as <code>''sign'' mantissa * 2<sup>(exponent - bias)</sup></code>. Exponent values which are all-zeros or all-ones encode four categories of special cases: zero, infinity, Not a Number (NaN), and subnormal numbers (numbers which are close to zero, where the significand does not have an implied 1 to the left of the radix point); in these special cases, the sign bit and significand values may have special meanings.
** There are some new floating-point formats appearing, such as ''Brain Float 16'', a 16-bit format with the same dynamic range as 32-bit IEEE 754 floating point but with less accuracy, intended for use in machine learning applications.
* Characters
** Characters are encoded as integers, where each integer corresponds to one "code point" in a character table (e.g., code 65 in ASCII corresponds to the character "A").
** Historically, many different coding schemes have been used, but the two most common ones were the American Standard Code for Information Interchange (ASCII), and Extended Binary Coded Decimal Interchange Code (EBCDIC - primarily used on IBM midrange and mainframe systems).
** ASCII characters occupied seven bits (code points 0-127), and contains only characters used in North American English. ASCII characters are usually encoded in bytes, so many vendors of ASCII-based systems used the remaining codes 128-255 for special characters such as graphics, line symbols (horizontal, vertical, connector, and corner line symbols for drawing tables), and accented characters; these were called "extended ASCII".
** Several ISO standards exist in an attempt to standardize the "extended ascii" characters, such as ISO8859, which was intended to enable the encoding of European languages by adding currency symbols and accented characters. However, the original version of ISO8859-1 does not include all accented characters and was created before the Euro symbol was standardized, so there are multiple versions of ISO8859, ranging from ISO8859-1 through ISO8859-15.
** The Unicode and ISO10646 initiatives were initiated to create a single character code set that would encode all symbols used in human writing, both for current and obsolete languages. These initiatives were merged, and the Unicode and ISO10646 standards define a common character set with 2<sup>32</sup> potential code points. However, Unicode also describes transformation formats for data interchange, rendering and composition/decomposition recommendations, and font symbol recommendations.
* The implementation built is dependent on the value of the ADJUST_CHANNEL_IMPLEMENTATION macro.
* The provided Makefile will build two versions of the binary, one using implementation 1 (named <code>image_adjust1</code>) and one using implementation 2 (named <code>image_adjust2</code>), and it will run through 3 tests with each binary. The tests use the input image file <code>tests/input/bree.jpg</code> (a picture of a cat) and place the output in the files <code>tests/output/bree[12][abc].jpg</code>. The output files are processed with adjustment factors of 0.5/0.5/0.5, 1.0/1.0/1.0, and 2.0/2.0/2.0.
* '''Please examine , build, and test the code , compare the implementations, and note how it works - there are extensive comments in the code, especially for implementation 2.'''
* Your observations about the code might make a good blog post!
=== Week 11 - Deliverables ===
* Blog about your project work.
 
 
== Week 12 ==
 
=== Week 12 - Class I ===
 
==== Video ====
* [https://web.microsoftstream.com/video/00172f3b-f0cb-486f-bf15-42c73e8916b4 SVE2 Examples] - Summary video of the SPO600 class on Tuesday, April 5.
 
==== SVE2 Demonstration ====
* The SVE2 [https://github.com/ctyler/sve2-test example code] has been extended with an additional inline assembley implementation, plus an ACLE implementation.
 
=== Week 12 - Class II ===
 
==== Video ====
* [https://web.microsoftstream.com/video/11def15f-20df-41b5-84f0-6fd5bd96bc2a SVE2 Examples - Part 2] - Part 2 of a look at the [https://github.com/ctyler/sve2-test example code] - A discussion of the bug that existed in the ACLE/intrinsics code discussed in the last class, plus an examination of the disassembly of the naive/autovectorized version of the code (implementation #1).
 
=== Week 12 - Deliverables ===
* Continue to blog about your project work
* Project Stage 2 will be due on '''Wednesday, April 13''' (11:59 pm EDT).
 
== Week 13 ==
 
=== Week 13 - Class I ===
 
==== Video ====
* [https://web.microsoftstream.com/video/274ee2d2-a19c-4d12-8c1b-78141cfb4566 Memory Systems] summary video
 
=== Week 13 - Class II ===
* Good Friday - no class
 
=== Week 13 Deliverables ===
* Continue to post about your project.
 
== Week 14 ==
 
=== Week 14 - Class I ===
 
==== Video ====
 
* (Not available)
 
=== Week 14 - Class II ===
 
=== Week 14 Deliverables ===
* [[Winter_2022_SPO600_Project|Project Stage 2]] due Monday April 18 (by 11:59 pm)
* [[Winter_2022_SPO600_Project|Project Stage 3]] due Friday April 22 (by 11:59 pm)
* April blog posts due Friday April 22 (by 11:59 pm)

Navigation menu