Changes

Jump to: navigation, search

Syscalls

133 bytes added, 09:17, 10 September 2019
no edit summary
[[Category:Assembly Language]]
The system call (''syscall'') mechanism is used by applications to access kernel services. The userland (application/non-kernel) program loads certain registers designating the system service (syscall) desired and the arguments to that syscall, then invokes a software [[Computer_Architecture#Interrupts_and_Exceptions|interrupt ]] or exception request which transfers control to the operating system kernel. Note that switching to kernel mode requires a change of [[Computer_Architecture#Execution_State,_Priviledge_State,_Rings,_or_Privilege_Level|processor mode ]] (sometimes call the privilege level or exception level), because the kernel has access to instructions, memory structures, memory areas, and devices which userland programs can't access. The syscall numbers may vary between architectures, and the registers as well as the method used to invoke syscalls are architecture-specific. The processor modes and activity involved in a userland-to-kernel switch also vary by architecture.
High-level languages wrap the syscall interface in basic wrappers or more advanced mechanisms. For example, in C, the ''write'' syscall can be accessed through the generic <code>syscall</code> wrapper, the <code>write()</code> wrapper, or through more complex functions such as <code>printf()</code>. [[Assembly Language|Assembly language]] programs will often access syscalls directly.
* The syscall is invoked with <code>svc 0</code>
== Syscall informationnames, numbers, and arguments ==
=== Documentation Syscall names ===
A list of syscalls can be found in the manpage for <code>syscalls(2)</code> (note: this is different from the manpage for <code>syscall(2)</code> which is a generic syscall wrapper). View this with the command <code>man 2 syscalls</code>

Navigation menu