OPS335 Lab 1
OBJECTIVE & PREPARATION
In OPS235, you learned how to configure a virtual private network for the centos1, centos2 and centos3 virtual machines. All of the virtual machines in the OPS335 course for labs and assignments will be CLI or "text-based" (just as centos3 was CLI for your OPS235 labs). All of the services that we are configuring for this course require a working network connection; therefore, it is very important that you know how to configure a network connection for your VMs, whether via command line for trouble-shooting purposes, or to create a persistent (permanent) network connection that uses static IP address (as opposed to DHCP).
This lab is a review of the material from labs 6 ( CLI Network Configuration ), but will also additional topics.
Online Resources
INVESTIGATION 1: BASIC NETWORK CONFIGURATION (REVISITED)
Remember how you set up the network interfaces in your virtual machines in OPS235? You are expected to be familiar with how to configure and test out a VM's network connectivity at this point.
Checking Your Current Network Settings
In OPS235, you have used the deprecated ifconfig and route commands. In this course we'll use the ip command instead. You may be familiar with the deprecated ifconfig and route commands, but you are expected to know the newer ip command as well.
Perform the following steps:
- View the table below comparing older vs newer methods of obtaining network setting information for a Linux machine.
- Comparison of Older and Newer Methods of Obtaining Network Settings
Purpose | Older Method (command) | Newer Method (command) |
Obtain IP ADDRESS and Subnet Mask | ifconfig | ip address |
---|---|---|
Obtain Default Gateway | route -n | ip route |
Obtain DNS Server | nslookup | more resolv.conf |
Obtain Hostname | uname -n | uname -n |
- Run the ifconfig and ip address commands in your c7host machine and at least one of your VMs. Do all of these commands work both in the c7host and Virtual Machine? Do you notice any differences between their respective outputs?
- Repeat the same steps for the other set of older vs newer commands listed in the table.
- Which commands do you prefer to use?
- Use the man pages or refer to following article 10 Useful ip Commands to see how to issue the above commands to create a temporary connection to your existing network.
Making Persistent (Permanent) Network Setting Changes
If you change your network settings using the commands in the previous section, those changes will be lost if you restart your Linux machine. In order to have your network settings become permanent, you need to edit and save the settings changes in a file. For the IP address, subnet mask, default gateway, and DNS server you edit that file is contained in a directory called: network-scripts.
Perform the following steps:
- From your OPS335/OPS235/ULI101 notes, issue a command to provide the full path-name of the directory: network-scripts. If that command or utility does not exist, simply install it.
- The name of the file that contains your persistent network settings has the following name format:
ifcfg-interfacename - Which file-name in your network-scripts directory do you think contains your current network settings?
- View the contents of the file to see if it contains the IP address, subnet mask, and default gateway.
- What is the MAC address if your current machine?
- Does this file contain the hostname of your machine? If not, what command can allow you to change your machine's hostname?
Except for your host machine, all the Virtual Machines in this course will have static network configuration (as opposed to Automatic or DHCP).
Sometimes, you will be required to debug networking problems quickly by changing the network configuration of your VMs.
- Edit the ifcfg-interfacename file for each of your VMs to use a static IP address (refer to previous OPS235 lab on networking: [ Network Config - CLI ].
You should be configuring the BOOTPROTO (static instead of dhcp), IPADDR, NETMASK, GATEWAY, and DNS1 for this file. Note the following information for this setup:- You will be using your last 2 digits in your student number for the third octet in your IPADDR. Your vm1 should use the first available address in the subnet, vm2 the second, and vm3 the third. Make certain that the IPADDR does not interfere with the GATEWAY or DNS!
- Don't forget to set the default gateway and DNS server for your VMs. You can use your host's IP address as a DNS server (libvirt will proxy the requests to the real DNS server).
- You can refer to your previous lab to obtain information for setup of these options: [ Configuring a VM Host ]
- Make note of the files used and entries required and note them in your lab log-book.
- Save your editing session, and then restart each VM and run the following command to ensure they still have the network configuration you set:
- ping (what is the purpose of this command?). Try to ping matrix and google from your host machine. Try to ping matrix and google from each of your VM's to ensure you can reach the outside world.
- ssh (into another server, like Matrix)
If you are uncertain how to perform those above-listed operations by member, take time to practice them.
If everything works and you are comfortable with these operations then you may proceed to the next section.
Linux Network Connection Configuration Troubleshooting
If the network works in your host, but not in your Virtual Machine, you should perform the following routine steps to troubleshoot the network connection:
- Is network on VM plugged in? On a physical network you would check whether the cable is plugged in and the link light is on on your network card. In a virtual network environment, you don't have a physical network adapter. Instead, you will need to check the NIC settings in the virtual machine details to view and confirm the appropriate network connection.
- Is the network enabled? This is a problem more common with virtual networks than physical networks. Check in your VirtManager->ConnectionDetails->VirtualNetworks that your network is active.
- Do you have an IP address? Run ip address to check.
- Can you ping the host by IP? (by its internal IP address). If not - check all of the above, check if you have an IP address conflict, and check that your subnet mask is correct.
- Can you ping 8.8.8.8? If all of the above work - check that your default gateway is set correctly with ip route and that you can ping the default gateway.
- Can you resolve google.ca? Run host google.ca. If the output doesn't provide an IP address, check that your DNS server is configured correctly and that you can ping that address.
There are a number of other problems that could prevent your network connection from functioning but the above are the most common problems.
"Break My Network" script
Move to your vm1 machine in order to perform the following trouble-shooting task:- Use the wget command (with option "--no-check-certificate" ) to download and run the following shell script:
http://scs.senecacollege.ca/~murray.saul/ops335/break-network.bash
NOTE: If the wget command is not available with your minimum install vms, then install that command. - When you have run that shell script, restart your vm1 machine.
- Use the commands taught in this lab to confirm if your network connection is broken.
- Carefully check your configuration to see if there is a change to your settings
- Try to temporarily connect to the Internet
- Edit your network settings file to make the changes permanent
- Test your connectivity (including after a reboot of your vm1.
Record steps, commands, and your observations in INVESTIGATION 1 in your OPS335 lab log-book
INVESTIGATION 2: Configuring SSH
The default (and often the only way) to administer a Linux server is via SSH. Even if you work in a graphical Linux environment, it is very useful to open a terminal and use SSH to monitor and manage your VMs (you can resize the terminal window). Using SSH to connect to remote servers on a network helps to protect your Linux machine from being penetrated. You can also generate a private and public encryption key for the root user, and copy that public key from your host to your VMs in order to allow certain backup programs to run via a scheduling daemon (called cron) without having to be required to enter the password for the remote machine. You will be doing those operations later in this lab.
Managing Services
The SSH server should already be installed and running in your VMs. If it's not installed, you can install openssh-server using yum. It is essential for CNS/CTY students to become comfortable managing services since you will need to constantly stop services, change their configuration, and start them for the configuration changes to take effect in nearly every topic this semester, and for other courses involving Linux network management.
Perform the following steps:
- Note the following systemctl commands (refer to man pages or the Internet) and become comfortable using them:
- systemctl list-units --all
- systemctl start/stop
- systemctl enable/disable
- systemctl status
- Launch your vm2 machine, login to the machine, and open a shell terminal.
- Use one of the commands above to check the status of your SSH server (i.e. service: sshd).
- Issue one of the above commands to stop of the ssh server and run a command to verify that the ssh server is no longer running.
- Issue another one of the above commands to start the SSH server and to verify that it is running.
- Issue a command (not listed above) to confirm that the ssh service will run upon when the vm2 server restarts.
Configuring the SSH Service
- A common (if somewhat blatant way) to try to hack into a machine is to try to ssh as root and brute-force root's password.
- The root user always exists, meaning the attacker doesn't need to try guessing what user names are on your system.
- And if they can get access to root, they can do anything.
- To prevent this, we will edit the configuration file for the ssh service to prevent root from ssh'ing into your host machine.
- Use the more command to display /etc/ssh/sshd_config on your host.
- This file contains the configuration parameters for the ssh service.
- Lines that begin with # are comments. Either simple explanations of parameters, or parameters that have not been set.
- Open the man page for sshd_config
- This lists all the possible parameters in alphabetical order along with a brief explanation of what each one does.
- The parameter we are looking for is PermitRootLogin, read its description.
- Use an editor (e.g. vi) to open /etc/ssh/sshd_config, and find the line that has PermitRootLogin.
- By default it is set to yes, allowing the root user to ssh in to the machine.
- Uncomment it, and change PermitRootLogin to no.
- Now try to use ssh from one of your VMs to log into your host as root.
- You'll still be able to. This is because (for most services) the changes you make to the configuration file will not take effect until the service restarts.
- Restart the sshd service on your host and try to ssh in again. Now it should prevent you.
- The configuration files for most services follow a very similar format. Some use an = between the parameter and its value, some require you to group certain parameters together, and most use # to be a comment. You will get lots of experience working with the configuration files for services in this course.
SSH Key Concepts
After performing lab7 in OPS235, you should have a basic understanding of ssh and public/private key cryptography to create secure connections between servers.
The public key can be "shared" with other server accounts, and can be used in conjunction with your private key in order to help encrypt/de-crypt data.
The diagram below is shared from Sébastien Saunier's blog. It demonstrates how SSH key authentication works. It's not a complete diagram, but it helps see all the parts of ssh key authentication in one place.
Generating a Public/Private Key Pair
The public/private key pair needs to be generated on and used on your c7host machine (i.e. the user/machine you're connecting from). The private key is the equivalent of a password (that it why it is considered to be private - only to be used by one owner). That is why the private key is stored in the owner's ~/.ssh/ directory.
One very common mistake that students make is to either generate the key pair for the WRONG account, or copy the public key to the WRONG account on the intended remote machine.
You generate a new keypair with this command (press enter for all the questions):
ssh-keygen -t rsa
When issuing this command, you will end up with the files: ~/.ssh/id_rsa and ~/.ss/id_rsa.pub (private and public keys)
Sharing your Public Key on a Remote server
So far, this topic is generally a repeat of OPS235 lab7.
What you may not know is that by using a "trick" (the magic of public key cryptography), you can SSH to a Linux machine without using a password!
Learning to perform this trick is essential in this course and in the industry in general. SSH keys are used everywhere that Linux servers are used.
If you have the private key, you can prove to someone who has your public key that you are indeed the actual owner of that public key. That is how ssh key authentication works. You are then only required to transfer your public key to a remote server.
You can transfer the public key to a remote server using either of the following methods:
- You are going to share the public key from the root user in your hostname with the root user of your vm1.
- Make certain you are logged on as root.
- Copy contents of your ~/.ssh/id_rsa.pub from your host machine, and append the contents to ~/.ssh/authorized_keys on each of your Virtual Machine servers
- Simply issue the Linux command ssh-copy-id -i ~/.ssh/id_rsa.pub username@server
In your case: ssh-copy-id -i ~/.ssh/id_rsa.pub root@IPADDR_for_vm1
After you perform either of those operations, you can then ssh into a remote vm without a password.
NOTE: Always remember that these keys are per-user, not per machine. This means that sharing a user's public key will only work for that specific user.
Perform the following steps:
- Refer to the above notes to allow an ssh connection from your host machine to any of your Virtual Machines (vm1, vm2, vm3) without requiring a password.
- Test each ssh connection between host and each virtual machine to ensure that this works.
INVESTIGATION 3: PERFORMING & AUTOMATING BACKUPS
Data backups are considered to be an insurance policy. Running backup can be tedious, but they MUST be performed in an accurate and consistent basis, since loss of data can be expensive (For example: cost of hiring staff to re-enter data).
When performing labs or assignments in this class, if you fail to make backups and something bad occurs and there is loss of data, it only affects you. On the other hand, if you are supporting a client, or working for a company and fail to adequately perform backups and there is loss of data, then other users are affected by failure to backup essential data.
Performing Full Backups
A full backup is backup of all of the files on a system. Since it may take a long time, this backup is NOT performed on a daily basis.
In OPS235, you learned to use the gzip, gunzip, and virsh dumpxml / virsh define commands to backup your virtual machines and the tar command as an archiving tool.
In this lab, we will expose you to the dump and restore utilities in order to perform full backups of your VMs. You should be using this utility to perform full backups of all of your VMs (both lab and assignment) prior to leaving your OPS335 lab session.
Perform the following steps:
- Make certain that your virtual machines are NOT running.
- Make certain that you are logged in as root user on your host machine.
- From your vm1 machine, make a cloned virtual machine called backup-test
- On your host machine, run the following commands:
mkdir -p /backup/full dump -z100 -f /backup/full/backup-test /var/lib/libvirt/images/backup-test.qcow2
- When the backup operation has been completed, issue the following command to determine the file-type:
file /backup/full/backup-test
- What is type of file is this? Use the ls -lh command to determine the size of this file.
- Remove the vm you just created by issuing the follow command:
rm /var/lib/libvirt/images/backup-test.qcow2
- Try launching the backup-test VM from the virtual machine manager. Did it work?
- Issue the following command to restore the backup-test VM by issuing the following command:
restore -x -f /backup/full/backup-test
- After restoration is complete, try launching the backup-test VM from your virtual machine manager. Were you successful?
- Create the sub-directory /root/bin
- Create a Bash shell script called /root/bin/mybackup.bash that will backup all of your other vms (i.e. vm1, vm2, and vm3) one at a time using the dump command into the respective path-names: /backup/full/vm1, /backup/full/vm2, and /backup/full/vm
- Set execute permissions, and run the shell script to verify that you shell script works.
- You can undefine the backup-test VM in the virtual machine manager and remove the image file for that VM in the /var/lib/libvirt/images directory.
It will be your responsibility as an administrator of your own Linux system, to backup all of your VMs for labs and assignments at the end of your lab session. Learning to create shell scripts to automate routine tasks (such as backups) will be EXTREMELY useful for your NDD430 course.
Performing Incremental Backups
An incremental backup is a backup of only files that have changed since the last backup. In your case, it may be a good idea to perform incremental backups of your /etc/ directory for your VMs upon startup. We will be using the rsync command to perform incremental backups for all of your VMs.
Rsync is a very versatile backup tool. As the name suggests, rsync is used for synchronizing files typically across a network. It works over the SSH protocol, which is useful in our situation since we are running ssh on our server and VMs. You are going to use your host machine to backup files from the virtual machines.
Perform the following steps:
- Make certain that your vm1 machine is running.
- Make certain that you are logged in as root user on your host machine.
- On your host machine, run the following commands:
mkdir -p /backup/vm1
rsync -avz 192.168.x.x:/etc /backup/incremental/vm1/ # where 192.168.x.x is the IPADDR of your vm1
NOTE: This command will NOT work if permit root access is denied for your sshd service configuration, so keep it off for now...
- If rsync prompts for a password, make certain that you completed the SSH key section above, and that you assigned the keys for the appropriate user
(in this case, for the root user for both the hostname and vm1!) - When the rsync command runs correctly, you should see all the files from vm1 being copied over to your host machine.
- Run the rsync command again. Notice that the second time nothing is copied over to your host machine since none of the files have changed on your vm1 machine.
- Create a new file in vm1's /etc/ directory, and rerun rsync. Confirm on your host machine that only that file that was created on your vm1 machine actually got backed up to your host machine.
- Repeat the above steps to create backups for your vm2 and vm3 machines on your host machine as well (for the respective directories: /backup/incremental/vm2 and /backup/incremental/vm3).
Automating Backups (cron)
Cron is a daemon (i.e. a program that runs in the background). The term "Cron" is short for Chronograph which was an old fashioned term for a stop watch or timer. The role of Cron is to run tasks periodically. It can run tasks for the system (as root) or for a user (including regular users).
You will get cron to run some backup scripts for vms for this course, but first, let's see how Cron works.
Every user has a crontab (Cron Table) which is a list of tasks they want to run periodically. You do not edit this file manually: instead, you edit this table using the command crontab -e. Once you run the command, you will get an empty file where you have to insert a line like this:
10 * * * * echo "Cron ran this job at: "`date` >> /tmp/cron.log
This tells cron to run the command echo "Cron ran this job at: "`date` > /tmp/cron.log at the 10th minute of every hour of every day of every month.
Perform the following steps:
- In your host machine as root, edit your crontab and enter the line above. Modify the setting so it will run that echo command every 2 minutes.
- Wait for two minutes to pass, and check the /tmp/cron.log file to see if it was created with the expected contents.
(You can also check /var/log/cron file to see what jobs were run). - Edit your crontab to make automatic backups of the /etc directory from vm1, vm2, and vm3 into /backup/vm1, /backup/vm2, and /backup/vm3 every hour and overwrite the previous backup.
Record steps, commands, and your observations in INVESTIGATION 2 in your OPS335 lab log-book
COMPLETING THE LAB
Depending on your professor you will either be asked to submit the lab in class, or online. Follow the appropriate set of instructions below.
Online Submission
Follow the instructions for lab 1 on moodle.
In Class Submission
Arrange evidence (command output) for each of these items on your screen, then ask your instructor to review them and sign off on the lab's completion:
- ✓ Each of your VMs should now boot to a command prompt (no graphical interface), and should be using a static IP address.
- ✓ Each of your VMs should have a working network connection and a static IP address.
- ✓ Each of your VMs should have an SSH server running.
- ✓ should be able to ssh from your host to each VM as the root user without a password.
- ✓ FULL and INCREMENTAL backups of your 3 VMs.
- ✓ You have notes in your labbook about what you've learned in this lab.
- ✓ Run a shell script to submit your lab:
- Steps:
- Issue the following command to download the bash shell script:
wget http://matrix.senecac.on.ca/~murray.saul/ops335/labcheck_network_backup.sh - Assign execute permissions, and run the script to check your work:
- Issue the following command to download the bash shell script:
labcheck_network_backup.sh
- NOTE: When prompted for the network interface, use the virtual interface.
EXPLORATION QUESTIONS
- Explain the major different between the ip and ifconfig commands.
- List the steps to create a temporary static IP network connection for your vm1 machine to connect to your host machine.
- List the steps to create a persistent static IP network connection for your vm1 machine to connect to your host machine.
- List at least 3 trouble-shooting techniques to check or verify a network connection from a vm to a host machine.
- List at least 5 reasons (from networking trouble-shooting) that can break a network connection.
- List the tools (commands) how to configure / stop / start the ssh service.
- Explain why it is important to know how to manage network services if you intend to configure ("tweak") the service.
- Briefly explain the purpose of the tar, cpio, dump, restore commands.
- Explain how the rsync command differs from the tar, cpio, dump, and restore commands.
- List the steps to create a crontab entry to run the program /bin/clean-out.bash every half day.
- What is the purpose of using crontabs for backing up your virtual machines' data to your host machine?