Open main menu

CDOT Wiki β

Assorted Algorithm Alliteration

Revision as of 16:00, 5 October 2012 by Elim2 (talk | contribs) (Profile)

Assorted Algorithm Alliteration

Team Members

  1. Mark de la Cruz
  2. Edwin Lim
  3. Michael Afidchao
  4. eMail All

[[Media:== Proposal ==

Game of Life

The Game of Life is a "0 player game" cellular automaton. With an initial configuration, the game uses a set of rules to determine what happens to the life forms from generation to generation. More information can be found at http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Source code can be found here:

http://www.shodor.org/media/content//petascale/materials/UPModules/exercises/Game_of_Life/GoL_Serial_Source_Files.zip

Profile

These results were taken with an execution of 50000 generations and default settings for the rest of the options.

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total
 time   seconds   seconds    calls  Ts/call  Ts/call  name
 55.82     14.76    14.76                             eval_rules
 41.75     25.80    11.04                             do_draw
  2.23     26.39     0.59                             update_grid
  0.19     26.44     0.05                             copy_bounds
  0.00     26.44     0.00    11025     0.00     0.00  rand_double
  0.00     26.44     0.00        1     0.00     0.00  allocate_grids
  0.00     26.44     0.00        1     0.00     0.00  free_grids
  0.00     26.44     0.00        1     0.00     0.00  init_grids
  0.00     26.44     0.00        1     0.00     0.00  moveWindow
  0.00     26.44     0.00        1     0.00     0.00  parse_args
  0.00     26.44     0.00        1     0.00     0.00  randomize_grid
  0.00     26.44     0.00        1     0.00     0.00  setupWindow
  0.00     26.44     0.00        1     0.00     0.00  write_grid

Code Snippet

/*
        eval_rules()
                Evaluate the rules of Life for each cell; count
                neighbors and update current state accordingly.
*/
void eval_rules (struct life_t * life) {
        int i,j,k,l,neighbors;

        int ncols = life->ncols;
        int nrows = life->nrows;

        int ** grid      = life->grid;
        int ** next_grid = life->next_grid;

        for (i = 1; i <= ncols; i++) {
                for (j = 1; j <= nrows; j++) {
                        neighbors = 0;

                        // count neighbors
                        for (k = i-1; k <= i+1; k++) {
                                for (l = j-1; l <= j+1; l++) {
                                        if (!(k == i && l == j) && grid[k][l] != DEAD)
                                                neighbors++;
                                }
                        }

                        // update state
                        if (neighbors < LOWER_THRESH || neighbors > UPPER_THRESH)
                                next_grid[i][j] = DEAD;
                        else if (grid[i][j] != DEAD || neighbors == SPAWN_THRESH)
                                next_grid[i][j] = grid[i][j]+1;
                }
        }
}

MD5 Checksum Calculator

The md5 checksum is a commonly used hash function that produces a 128-bit hash value commonly used to check data integrity. It is also used in a wide variety of security applications, however its use in checking data integrity is what will be explored in this assignment.

The full source code for the MD5 checksum calculator can be found here: [1]

Profile

The following result (external link) was found after attempting to generate the md5 checksum for a 6.4gb file (Windows Vista ISO): [2]]

Code Snippet

From analysis of the above profile, the code to be targetted for optimization is the following:

void _MD5_transform
  (unsigned int state[4],
   unsigned char block[64])
{

  unsigned int lA = state[0], lB = state[1], lC = state[2], lD = state[3];
  unsigned int x[16];
 
  _MD5_decode (x, block, 64);

  // round 1
  FF ( lA, lB, lC, lD, x[ 0], S11, 0xd76aa478); // 1
  FF ( lD, lA, lB, lC, x[ 1], S12, 0xe8c7b756); // 2
  FF ( lC, lD, lA, lB, x[ 2], S13, 0x242070db); // 3
  FF ( lB, lC, lD, lA, x[ 3], S14, 0xc1bdceee); // 4
  FF ( lA, lB, lC, lD, x[ 4], S11, 0xf57c0faf); // 5
  FF ( lD, lA, lB, lC, x[ 5], S12, 0x4787c62a); // 6
  FF ( lC, lD, lA, lB, x[ 6], S13, 0xa8304613); // 7
  FF ( lB, lC, lD, lA, x[ 7], S14, 0xfd469501); // 8
  FF ( lA, lB, lC, lD, x[ 8], S11, 0x698098d8); // 9
  FF ( lD, lA, lB, lC, x[ 9], S12, 0x8b44f7af); // 10
  FF ( lC, lD, lA, lB, x[10], S13, 0xffff5bb1); // 11
  FF ( lB, lC, lD, lA, x[11], S14, 0x895cd7be); // 12
  FF ( lA, lB, lC, lD, x[12], S11, 0x6b901122); // 13
  FF ( lD, lA, lB, lC, x[13], S12, 0xfd987193); // 14
  FF ( lC, lD, lA, lB, x[14], S13, 0xa679438e); // 15
  FF ( lB, lC, lD, lA, x[15], S14, 0x49b40821); // 16

  // round 2
  GG ( lA, lB, lC, lD, x[ 1], S21, 0xf61e2562); // 17
  GG ( lD, lA, lB, lC, x[ 6], S22, 0xc040b340); // 18
  GG ( lC, lD, lA, lB, x[11], S23, 0x265e5a51); // 19
  GG ( lB, lC, lD, lA, x[ 0], S24, 0xe9b6c7aa); // 20
  GG ( lA, lB, lC, lD, x[ 5], S21, 0xd62f105d); // 21
  GG ( lD, lA, lB, lC, x[10], S22,  0x2441453); // 22
  GG ( lC, lD, lA, lB, x[15], S23, 0xd8a1e681); // 23
  GG ( lB, lC, lD, lA, x[ 4], S24, 0xe7d3fbc8); // 24
  GG ( lA, lB, lC, lD, x[ 9], S21, 0x21e1cde6); // 25
  GG ( lD, lA, lB, lC, x[14], S22, 0xc33707d6); // 26
  GG ( lC, lD, lA, lB, x[ 3], S23, 0xf4d50d87); // 27
  GG ( lB, lC, lD, lA, x[ 8], S24, 0x455a14ed); // 28
  GG ( lA, lB, lC, lD, x[13], S21, 0xa9e3e905); // 29
  GG ( lD, lA, lB, lC, x[ 2], S22, 0xfcefa3f8); // 30
  GG ( lC, lD, lA, lB, x[ 7], S23, 0x676f02d9); // 31
  GG ( lB, lC, lD, lA, x[12], S24, 0x8d2a4c8a); // 32

  // round 3
  HH ( lA, lB, lC, lD, x[ 5], S31, 0xfffa3942); // 33
  HH ( lD, lA, lB, lC, x[ 8], S32, 0x8771f681); // 34
  HH ( lC, lD, lA, lB, x[11], S33, 0x6d9d6122); // 35
  HH ( lB, lC, lD, lA, x[14], S34, 0xfde5380c); // 36
  HH ( lA, lB, lC, lD, x[ 1], S31, 0xa4beea44); // 37
  HH ( lD, lA, lB, lC, x[ 4], S32, 0x4bdecfa9); // 38
  HH ( lC, lD, lA, lB, x[ 7], S33, 0xf6bb4b60); // 39
  HH ( lB, lC, lD, lA, x[10], S34, 0xbebfbc70); // 40
  HH ( lA, lB, lC, lD, x[13], S31, 0x289b7ec6); // 41
  HH ( lD, lA, lB, lC, x[ 0], S32, 0xeaa127fa); // 42
  HH ( lC, lD, lA, lB, x[ 3], S33, 0xd4ef3085); // 43
  HH ( lB, lC, lD, lA, x[ 6], S34,  0x4881d05); // 44
  HH ( lA, lB, lC, lD, x[ 9], S31, 0xd9d4d039); // 45
  HH ( lD, lA, lB, lC, x[12], S32, 0xe6db99e5); // 46
  HH ( lC, lD, lA, lB, x[15], S33, 0x1fa27cf8); // 47
  HH ( lB, lC, lD, lA, x[ 2], S34, 0xc4ac5665); // 48

  // round 4
  II ( lA, lB, lC, lD, x[ 0], S41, 0xf4292244); // 49
  II ( lD, lA, lB, lC, x[ 7], S42, 0x432aff97); // 50
  II ( lC, lD, lA, lB, x[14], S43, 0xab9423a7); // 51
  II ( lB, lC, lD, lA, x[ 5], S44, 0xfc93a039); // 52
  II ( lA, lB, lC, lD, x[12], S41, 0x655b59c3); // 53
  II ( lD, lA, lB, lC, x[ 3], S42, 0x8f0ccc92); // 54
  II ( lC, lD, lA, lB, x[10], S43, 0xffeff47d); // 55
  II ( lB, lC, lD, lA, x[ 1], S44, 0x85845dd1); // 56
  II ( lA, lB, lC, lD, x[ 8], S41, 0x6fa87e4f); // 57
  II ( lD, lA, lB, lC, x[15], S42, 0xfe2ce6e0); // 58
  II ( lC, lD, lA, lB, x[ 6], S43, 0xa3014314); // 59
  II ( lB, lC, lD, lA, x[13], S44, 0x4e0811a1); // 60
  II ( lA, lB, lC, lD, x[ 4], S41, 0xf7537e82); // 61
  II ( lD, lA, lB, lC, x[11], S42, 0xbd3af235); // 62
  II ( lC, lD, lA, lB, x[ 2], S43, 0x2ad7d2bb); // 63
  II ( lB, lC, lD, lA, x[ 9], S44, 0xeb86d391); // 64

  state[0] += lA;
  state[1] += lB;
  state[2] += lC;
  state[3] += lD;
 
  // lClear sensitive information
  memset(x, 0, 16);
}

Instructor's Comments