Open main menu

CDOT Wiki β

A-Team

Revision as of 17:20, 8 March 2019 by Spdjurovic (talk | contribs) (Progress)

Back Propagation Acceleration

Team Members

  1. Sebastian Djurovic, Team Lead and Developer
  2. Henry Leung, Developer and Quality Control
  3. ...

Email All

Progress

Assignment 1

Our group decided to profile a couple of different solutions, the first being a simple neural network and ray tracing solution, in order to determine the best project to generate a solution for.

Neural Network
Sebastian's findings

I found a simple neural network that takes a MNIST data set and preforms training on batches of the data. For a quick illustration MNIST is a numerical data set that contains many written numbers --in a gray scale format at 28 x 28 pixels in size. As well as the corresponding numerical values; between 0 and 9. The reason for this data set is to train networks such that they will be able to recognize written numbers when they confront them.

 

Initial Profile
Flat profile:
Each sample counts as 0.01 seconds.
 %   cumulative   self              self     total           
time   seconds   seconds    calls  ns/call  ns/call  name    
97.94    982.46   982.46                             dot(std::vector<float, std::allocator<float> > const&, std::vector<float, std::allocator<float> > const&, int, int, int)
 1.45    997.05    14.58                             transpose(float*, int, int)
 0.15    998.56     1.51                             operator-(std::vector<float, std::allocator<float> > const&, std::vector<float, std::allocator<float> > const&)
 0.15   1000.06     1.50                             relu(std::vector<float, std::allocator<float> > const&)
 0.15   1001.55     1.49                             operator*(float, std::vector<float, std::allocator<float> > const&)
 0.07   1002.27     0.72 519195026     1.39     1.39  void std::vector<float, std::allocator<float> >::emplace_back<float>(float&&)
 0.06   1002.91     0.63                             operator*(std::vector<float, std::allocator<float> > const&, std::vector<float, std::allocator<float> > const&)
 0.05   1003.37     0.46                             reluPrime(std::vector<float, std::allocator<float> > const&)
 0.02   1003.62     0.25                             softmax(std::vector<float, std::allocator<float> > const&, int)
 0.01   1003.75     0.13                             operator/(std::vector<float, std::allocator<float> > const&, float)
 0.01   1003.87     0.12   442679   271.35   271.35  void std::vector<float, std::allocator<float> >::_M_emplace_back_aux<float>(float&&)
 0.01   1003.96     0.09 13107321     6.87     6.87  void std::vector<float, std::allocator<float> >::_M_emplace_back_aux<float const&>(float const&)
 0.01   1004.02     0.06                             split(std::string const&, char)
 0.01   1004.08     0.06   462000   130.00   130.00  void std::vector<std::string, std::allocator<std::string> >::_M_emplace_back_aux<std::string const&>(std::string const&)
 0.00   1004.11     0.03                             std::vector<std::string, std::allocator<std::string> >::~vector()
 0.00   1004.12     0.01                             random_vector(int)
 0.00   1004.12     0.00        3     0.00     0.00  std::vector<float, std::allocator<float> >::vector(unsigned long, std::allocator<float> const&)
 0.00   1004.12     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z5printRKSt6vectorIfSaIfEEii

 

After the initial profile it is obvious that the dot product function consumes 97.94% of our run time. Additionally, the transpose function also consumes 1.45% which seems messily, however during back propagation transpose is also called, as well as two rectifiers(activation functions), reluPrime and relu. Where reluPrime is a binary activation function.

Relu = f(x) = {0 for x > 0, x otherwise}
ReluPrime = f(x) = {0 for x > 0, 1 otherwise}
       // Back propagation
       vector<float> dyhat = (yhat - b_y);
       // dW3 = a2.T * dyhat
       vector<float> dW3 = dot(transpose( &a2[0], BATCH_SIZE, 64 ), dyhat, 64, BATCH_SIZE, 10);
       // dz2 = dyhat * W3.T * relu'(a2)
       vector<float> dz2 = dot(dyhat, transpose( &W3[0], 64, 10 ), BATCH_SIZE, 10, 64) * reluPrime(a2);
       // dW2 = a1.T * dz2
       vector<float> dW2 = dot(transpose( &a1[0], BATCH_SIZE, 128 ), dz2, 128, BATCH_SIZE, 64);
       // dz1 = dz2 * W2.T * relu'(a1)
       vector<float> dz1 = dot(dz2, transpose( &W2[0], 128, 64 ), BATCH_SIZE, 64, 128) * reluPrime(a1);
       // dW1 = X.T * dz1
       vector<float> dW1 = dot(transpose( &b_X[0], BATCH_SIZE, 784 ), dz1, 784, BATCH_SIZE, 128);


vector <float> dot (const vector <float>& m1, const vector <float>& m2, const int m1_rows, const int m1_columns, const int m2_columns) { 
   vector <float> output (m1_rows*m2_columns);
   
   for( int row = 0; row != m1_rows; ++row ) {
       for( int col = 0; col != m2_columns; ++col ) {
           output[ row * m2_columns + col ] = 0.f;
           for( int k = 0; k != m1_columns; ++k ) {
               output[ row * m2_columns + col ] += m1[ row * m1_columns + k ] * m2[ k * m2_columns + col ];
           }
       }
   }
   
   return output;
}
 
 //

// nn.cpp // // To compile: g++ -o nn nn.cpp -std=c++11 // To run: ./nn // Created by Sergei Bugrov on 4/20/18. // Copyright © 2017 Sergei Bugrov. All rights reserved. // Download dataset from: https://drive.google.com/file/d/1OdtwXHf_-2T0aS9HLBnxU3o-72mklCZY/view?usp=sharing

  1. include <iostream>
  2. include <vector>
  3. include <math.h>
  4. include <fstream>
  5. include <sstream>
  6. include <string>
  7. include <random>

using namespace std;

void print ( const vector <float>& m, int n_rows, int n_columns ) {

   /*  "Couts" the input vector as n_rows x n_columns matrix.
    Inputs:
    m: vector, matrix of size n_rows x n_columns
    n_rows: int, number of rows in the left matrix m1
    n_columns: int, number of columns in the left matrix m1
    */
   
   for( int i = 0; i != n_rows; ++i ) {
       for( int j = 0; j != n_columns; ++j ) {
           cout << m[ i * n_columns + j ] << " ";
       }
       cout << '\n';
   }
   cout << endl;

}

int argmax ( const vector <float>& m ) {

   return distance(m.begin(), max_element(m.begin(), m.end()));

}

vector <float> relu(const vector <float>& z){

   int size = z.size();
   vector <float> output;
   for( int i = 0; i < size; ++i ) {
       if (z[i] < 0){
           output.push_back(0.0);
       }
       else output.push_back(z[i]);
   }
   return output;

}

vector <float> reluPrime (const vector <float>& z) {

   int size = z.size();
   vector <float> output;
   for( int i = 0; i < size; ++i ) {
       if (z[i] <= 0){
           output.push_back(0.0);
       }
       else output.push_back(1.0);
   }
   return output;

}

static vector<float> random_vector(const int size) {

   random_device rd;
   mt19937 gen(rd());
   uniform_real_distribution<> distribution(0.0, 0.05);
   static default_random_engine generator;
   vector<float> data(size);
   generate(data.begin(), data.end(), [&]() { return distribution(generator); });
   return data;

}

vector <float> softmax (const vector <float>& z, const int dim) {

   const int zsize = static_cast<int>(z.size());
   vector <float> out;
   
   for (unsigned i = 0; i != zsize; i += dim) {
       vector <float> foo;
       for (unsigned j = 0; j != dim; ++j) {
           foo.push_back(z[i + j]);
       }
       
       float max_foo = *max_element(foo.begin(), foo.end());
       for (unsigned j = 0; j != dim; ++j) {
           foo[j] = exp(foo[j] - max_foo);
       }      
       float sum_of_elems = 0.0;
       for (unsigned j = 0; j != dim; ++j) {
           sum_of_elems = sum_of_elems + foo[j];
       }
       
       for (unsigned j = 0; j != dim; ++j) {
           out.push_back(foo[j]/sum_of_elems);
       }
   }
   return out;

}

vector <float> sigmoid_d (const vector <float>& m1) {

   /*  Returns the value of the sigmoid function derivative f'(x) = f(x)(1 - f(x)),
    where f(x) is sigmoid function.
    Input: m1, a vector.
    Output: x(1 - x) for every element of the input matrix m1.
    */
   
   const unsigned long VECTOR_SIZE = m1.size();
   vector <float> output (VECTOR_SIZE);
   
   
   for( unsigned i = 0; i != VECTOR_SIZE; ++i ) {
       output[ i ] = m1[ i ] * (1 - m1[ i ]);
   }
   
   return output;

}

vector <float> sigmoid (const vector <float>& m1) {

   /*  Returns the value of the sigmoid function f(x) = 1/(1 + e^-x).
    Input: m1, a vector.
    Output: 1/(1 + e^-x) for every element of the input matrix m1.
    */
   
   const unsigned long VECTOR_SIZE = m1.size();
   vector <float> output (VECTOR_SIZE);
   
   
   for( unsigned i = 0; i != VECTOR_SIZE; ++i ) {
       output[ i ] = 1 / (1 + exp(-m1[ i ]));
   }
   
   return output;

}

vector <float> operator+(const vector <float>& m1, const vector <float>& m2){

   /*  Returns the elementwise sum of two vectors.
    Inputs:
    m1: a vector
    m2: a vector
    Output: a vector, sum of the vectors m1 and m2.
    */
   
   const unsigned long VECTOR_SIZE = m1.size();
   vector <float> sum (VECTOR_SIZE);
   
   for (unsigned i = 0; i != VECTOR_SIZE; ++i){
       sum[i] = m1[i] + m2[i];
   };
   
   return sum;

}

vector <float> operator-(const vector <float>& m1, const vector <float>& m2){

   /*  Returns the difference between two vectors.
    Inputs:
    m1: vector
    m2: vector
    Output: vector, m1 - m2, difference between two vectors m1 and m2.
    */
   
   const unsigned long VECTOR_SIZE = m1.size();
   vector <float> difference (VECTOR_SIZE);
   
   for (unsigned i = 0; i != VECTOR_SIZE; ++i){
       difference[i] = m1[i] - m2[i];
   };
   
   return difference;

}

vector <float> operator*(const vector <float>& m1, const vector <float>& m2){

   /*  Returns the product of two vectors (elementwise multiplication).
    Inputs:
    m1: vector
    m2: vector
    Output: vector, m1 * m2, product of two vectors m1 and m2
    */
   
   const unsigned long VECTOR_SIZE = m1.size();
   vector <float> product (VECTOR_SIZE);
   
   for (unsigned i = 0; i != VECTOR_SIZE; ++i){
       product[i] = m1[i] * m2[i];
   };
   
   return product;

}

vector <float> operator*(const float m1, const vector <float>& m2){

   /*  Returns the product of a float and a vectors (elementwise multiplication).
    Inputs:
    m1: float
    m2: vector
    Output: vector, m1 * m2, product of two vectors m1 and m2
    */
   
   const unsigned long VECTOR_SIZE = m2.size();
   vector <float> product (VECTOR_SIZE);
   
   for (unsigned i = 0; i != VECTOR_SIZE; ++i){
       product[i] = m1 * m2[i];
   };
   
   return product;

}

vector <float> operator/(const vector <float>& m2, const float m1){

   /*  Returns the product of a float and a vectors (elementwise multiplication).
    Inputs:
    m1: float
    m2: vector
    Output: vector, m1 * m2, product of two vectors m1 and m2
    */
   
   const unsigned long VECTOR_SIZE = m2.size();
   vector <float> product (VECTOR_SIZE);
   
   for (unsigned i = 0; i != VECTOR_SIZE; ++i){
       product[i] = m2[i] / m1;
   };
   
   return product;

}

vector <float> transpose (float *m, const int C, const int R) {

   /*  Returns a transpose matrix of input matrix.
    Inputs:
    m: vector, input matrix
    C: int, number of columns in the input matrix
    R: int, number of rows in the input matrix
    Output: vector, transpose matrix mT of input matrix m
    */
   
   vector <float> mT (C*R);
   
   for(unsigned n = 0; n != C*R; n++) {
       unsigned i = n/C;
       unsigned j = n%C;
       mT[n] = m[R*j + i];
   }
   
   return mT;

}

vector <float> dot (const vector <float>& m1, const vector <float>& m2, const int m1_rows, const int m1_columns, const int m2_columns) {

   /*  Returns the product of two matrices: m1 x m2.
    Inputs:
    m1: vector, left matrix of size m1_rows x m1_columns
    m2: vector, right matrix of size m1_columns x m2_columns (the number of rows in the right matrix
    must be equal to the number of the columns in the left one)
    m1_rows: int, number of rows in the left matrix m1
    m1_columns: int, number of columns in the left matrix m1
    m2_columns: int, number of columns in the right matrix m2
    Output: vector, m1 * m2, product of two vectors m1 and m2, a matrix of size m1_rows x m2_columns
    */
   
   vector <float> output (m1_rows*m2_columns);
   
   for( int row = 0; row != m1_rows; ++row ) {
       for( int col = 0; col != m2_columns; ++col ) {
           output[ row * m2_columns + col ] = 0.f;
           for( int k = 0; k != m1_columns; ++k ) {
               output[ row * m2_columns + col ] += m1[ row * m1_columns + k ] * m2[ k * m2_columns + col ];
           }
       }
   }
   
   return output;

}

vector<string> split(const string &s, char delim) {

   stringstream ss(s);
   string item;
   vector<string> tokens;
   while (getline(ss, item, delim)) {
       tokens.push_back(item);
   }
   return tokens;

}

int main(int argc, const char * argv[]) {

   string line;
   vector<string> line_v;
   cout << "Loading data ...\n";
   vector<float> X_train;
   vector<float> y_train;
   ifstream myfile ("train.txt");
   if (myfile.is_open())
   {
       while ( getline (myfile,line) )
       {
           line_v = split(line, '\t');
           int digit = strtof((line_v[0]).c_str(),0);
           for (unsigned i = 0; i < 10; ++i) {
               if (i == digit)
               {
                   y_train.push_back(1.);
               }
               else y_train.push_back(0.);
           }
           
           int size = static_cast<int>(line_v.size());
           for (unsigned i = 1; i < size; ++i) {
               X_train.push_back(strtof((line_v[i]).c_str(),0));
           }
       }
       X_train = X_train/255.0;
       myfile.close();
   }
   
   else cout << "Unable to open file" << '\n';
   
   int xsize = static_cast<int>(X_train.size());
   int ysize = static_cast<int>(y_train.size());
   
   // Some hyperparameters for the NN
   int BATCH_SIZE = 256;
   float lr = .01/BATCH_SIZE;
   // Random initialization of the weights
   vector <float> W1 = random_vector(784*128);
   vector <float> W2 = random_vector(128*64);
   vector <float> W3 = random_vector(64*10);
   cout << "Training the model ...\n";
   for (unsigned i = 0; i < 10000; ++i) {
       // Building batches of input variables (X) and labels (y)
       int randindx = rand() % (42000-BATCH_SIZE);
       vector<float> b_X;
       vector<float> b_y;
       for (unsigned j = randindx*784; j < (randindx+BATCH_SIZE)*784; ++j){
           b_X.push_back(X_train[j]);
       }
       for (unsigned k = randindx*10; k < (randindx+BATCH_SIZE)*10; ++k){
           b_y.push_back(y_train[k]);
       }
       // Feed forward
       vector<float> a1 = relu(dot( b_X, W1, BATCH_SIZE, 784, 128 ));
       vector<float> a2 = relu(dot( a1, W2, BATCH_SIZE, 128, 64 ));
       vector<float> yhat = softmax(dot( a2, W3, BATCH_SIZE, 64, 10 ), 10);
       
       // Back propagation
       vector<float> dyhat = (yhat - b_y);
       // dW3 = a2.T * dyhat
       vector<float> dW3 = dot(transpose( &a2[0], BATCH_SIZE, 64 ), dyhat, 64, BATCH_SIZE, 10);
       // dz2 = dyhat * W3.T * relu'(a2)
       vector<float> dz2 = dot(dyhat, transpose( &W3[0], 64, 10 ), BATCH_SIZE, 10, 64) * reluPrime(a2);
       // dW2 = a1.T * dz2
       vector<float> dW2 = dot(transpose( &a1[0], BATCH_SIZE, 128 ), dz2, 128, BATCH_SIZE, 64);
       // dz1 = dz2 * W2.T * relu'(a1)
       vector<float> dz1 = dot(dz2, transpose( &W2[0], 128, 64 ), BATCH_SIZE, 64, 128) * reluPrime(a1);
       // dW1 = X.T * dz1
       vector<float> dW1 = dot(transpose( &b_X[0], BATCH_SIZE, 784 ), dz1, 784, BATCH_SIZE, 128);
       
       // Updating the parameters
       W3 = W3 - lr * dW3;
       W2 = W2 - lr * dW2;
       W1 = W1 - lr * dW1;


       if ((i+1) % 100 == 0){
           cout << "-----------------------------------------------Epoch " << i+1 << "--------------------------------------------------" 
<<"\n";
           cout << "Predictions:" << "\n";
           print ( yhat, 10, 10 );
           cout << "Ground truth:" << "\n";
           print ( b_y, 10, 10 );
           vector<float> loss_m = yhat - b_y;
           float loss = 0.0;
           for (unsigned k = 0; k < BATCH_SIZE*10; ++k){
               loss += loss_m[k]*loss_m[k];
           }
           cout << "                                            Loss " << loss/BATCH_SIZE <<"\n";
           cout << "--------------------------------------------End of Epoch :(------------------------------------------------" <<"\n";
       };
   };
   
   return 0;
}


Ray Tracing

Assignment 2

Assignment 3