Lkates
Lorne Kates' User Page.
Me
I'm a 4/5/6/7th semester BSD student. I transferred in after completing CTY. Since the programs are similar yet different, I'm taking courses from all over the cirriculum.
In my spare time (what little there is), I pursue a myrid of hobbies in a very Jack-of-all-Trades manner. I read, write, play the guitar, and cook. My first short story was published earlier this year in the anthology Mythspring
I also run a yard haunt in Newmarket. Pictures from 2004, and some from 2005, are posted on the haunt's site.
My email: lkates@learn.senecac.on.ca
IRC handle: halcyon1234
BTP600
BTP600 course material goes here. I wouldn't mind doing the Wikipedia Design Pattern stub.
Code Reading Exercise
Looking at MAKE and ???
- Which file(s) did you have to examine?
make First I looked at loadargc, since argc reminds me of the C/C++ standard command line variables that you use in main. However, that turned out to be a load balancing program. Next I looked at Main.h, since main seems like a good start, and headers tend to define stuff. But there wasn’t anything useful there. So I opened Main.c, and voila! Code that has to do with command line switches.
- What are your first reactions to these files when you examine them?
make I don’t think I can put them down, in accordance to Seneca’s Acceptable Use Policy. But the sheer amount of code and underscores and structs were a bit overwhelming.
- How is the code for working with command-line switches organized at the method, class and project levels? (e.g. is is all in one class? broken across multiple classes? spread across many methods? etc)
make There are a couple methods defined right near the beginning:
static void decode_switches PARAMS ((int argc, char **argv, int env)); static void decode_env_switches PARAMS ((char *envar, unsigned int len));
Almost immediately afterwards, there's the structure for an acceptable command line switch
/* The structure that describes an accepted command switch. */
struct command_switch
{ int c; /* The switch character. */
enum /* Type of the value. */ {
flag, /* Turn int flag on. */ flag_off, /* Turn int flag off. */ string, /* One string per switch. */ positive_int, /* A positive integer. */ floating, /* A floating-point number (double). */ ignore /* Ignored. */
} type;
char *value_ptr; /* Pointer to the value-holding variable. */
unsigned int env:1; /* Can come from MAKEFLAGS. */ unsigned int toenv:1; /* Should be put in MAKEFLAGS. */ unsigned int no_makefile:1; /* Don't propagate when remaking makefiles. */
char *noarg_value; /* Pointer to value used if no argument is given. */ char *default_value;/* Pointer to default value. */
char *long_name; /* Long option name. */ };
Main.c then goes on to define a usage output, that is used to define, in English, how to use all the different flags. Presumably, this is used when the /h switch is used
/* The usage output. We write it this way to make life easier for the
translators, especially those trying to translate to right-to-left languages like Hebrew. */
static const char *const usage[] = ...
N_("\ -h, --help Print this message and exit.\n"),
...
Afterwards, there is a table of the command switches, along with a bunch of flags and numbers I don't understand.
/* The table of command switches. */
static const struct command_switch switches[] =
{ 'b', ignore, 0, 0, 0, 0, 0, 0, 0 }, { 'B', flag, (char *) &always_make_flag, 1, 1, 0, 0, 0, "always-make" },
...
It also defines "long names" for short switches, like when you use --help rather than /h
/* Secondary long names for options. */
static struct option long_option_aliases[] =
{ { "quiet", no_argument, 0, 's' }, { "stop", no_argument, 0, 'S' }, { "new-file", required_argument, 0, 'W' }, { "assume-new", required_argument, 0, 'W' }, { "assume-old", required_argument, 0, 'o' }, { "max-load", optional_argument, 0, 'l' }, { "dry-run", no_argument, 0, 'n' }, { "recon", no_argument, 0, 'n' }, { "makefile", required_argument, 0, 'f' }, };
Main.h also defines a structure called "file", which has error handling in it for empty filenames:
static struct file *
enter_command_line_file (name)
char *name;
{
if (name[0] == '\0') fatal (NILF, _("empty string invalid as file name"));
Shortly after, main goes into its main() function. It starts to do a bunch of crazy stuff with backslash conversion and allocating temp space for variables and stuff. After its done that, it goes ahead and re-interprets the command line switches, in case Make itself has added any:
/* Decode switches again, in case the variables were set by the makefile. */ decode_env_switches ("MAKEFLAGS", 9);
- if 0
decode_env_switches ("MFLAGS", 6);
- endif
It then goes into a bunch of "goal files", which are, as far as I can tell, files that have to be made. If none are specified, but are expected, it dies:
if (!goals) { if (read_makefiles == 0) fatal (NILF, _("No targets specified and no makefile found"));
fatal (NILF, _("No targets")); }
- How are invalid or non-existent Filenames dealt with?
In general, a fatal flag is put up, and the program dies. This seems to be mostly done when the command line switches are processed. If a file was expected (ie: a Make file, or a file specified after a switch argument), then the errors are found when the switch is processed, or the file is looked at. This is different from what I was expecting. I was expecting it to do mandatory file checking right off the bat (start of main function, perhaps), and dying before it did any other work.