SLEEPy
GPU621/DPS921 | Participants | Groups and Projects | Resources | Glossary
Contents
Intel Data Analytics Acceleration Library (DAAL)
Team Member
Intro OLD
Local DAAL Examples Location: C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2016\windows\daal\examples
Data: http://open.canada.ca/data/en/dataset/cad804cd-454e-4bd7-9f22-fcee64f60719
New Data: http://open.canada.ca/data/en/dataset/be3880f2-0d04-4583-8265-611b231ebce8
Parser code: https://software.intel.com/en-us/node/610127
Low Order Moments: https://software.intel.com/en-us/node/599561
Our goal is to parse & process this crime data and to add more meaning to said data. Using various parallel techniques taught in the course and comparing them via the DAAL library.
Introduction
DAAL is a C++ & Java / Scala library for data analytics. It's similar to MKL with some differences:
- MKL focuses on computation. DAAL focuses on the entire data flow (aquisition, transformation, processing).
- Optimized for all kinds of Intel based devices (from data center to home computers)
DAAL supports offline, online and distributed data processing.
DAAL works with different BIG Data frameworks:
- Hadoop
- Spark
- MPI
Parallel
Code Examples
Batch Sorting
/* file: sorting_batch.cpp
* Copyright 2014-2016 Intel Corporation All Rights Reserved.*/
#include "daal.h"
#include "service.h"
using namespace daal;
using namespace daal::algorithms;
using namespace daal::data_management;
using namespace std;
/* Input data set parameters */
string datasetFileName = "../data/batch/sorting.csv";
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &datasetFileName);
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> dataSource(datasetFileName, DataSource::doAllocateNumericTable, DataSource::doDictionaryFromContext);
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
/* Create algorithm objects to sort data using the default (radix) method */
sorting::Batch<> algorithm;
/* Print the input observations matrix */
printNumericTable(dataSource.getNumericTable(), "Initial matrix of observations:");
/* Set input objects for the algorithm */
algorithm.input.set(sorting::data, dataSource.getNumericTable());
/* Sort data observations */
algorithm.compute();
/* Get the sorting result */
services::SharedPtr<sorting::Result> res = algorithm.getResult();
printNumericTable(res->get(sorting::sortedData), "Sorted matrix of observations:");
return 0;
}