Difference between revisions of "Studyapplocator"

From CDOT Wiki
Jump to: navigation, search
(Profiling and analysis)
Line 11: Line 11:
 
It is a puzzle game where players insert number on a grid consisting of squares with equal number of smaller squares inside. Most games consist of 9x9 grid with higher difficulty and run-time at bigger sizes and more missing numbers. The rules of the game are to insert numbers in such a way that every number appears once in each horizontal and vertical line and the inner square.
 
It is a puzzle game where players insert number on a grid consisting of squares with equal number of smaller squares inside. Most games consist of 9x9 grid with higher difficulty and run-time at bigger sizes and more missing numbers. The rules of the game are to insert numbers in such a way that every number appears once in each horizontal and vertical line and the inner square.
  
==Profiling and analysis==
+
==Profiling and Analysis==
  
 
The following program was run on Matrix command line without any modification to the original code.
 
The following program was run on Matrix command line without any modification to the original code.

Revision as of 22:12, 6 March 2018

Studyapplocator

Team Members

  1. Faiq Malik
  2. Soutrik Barua

Email All

Assignment 1

Sudoku

What is Sudoku?

It is a puzzle game where players insert number on a grid consisting of squares with equal number of smaller squares inside. Most games consist of 9x9 grid with higher difficulty and run-time at bigger sizes and more missing numbers. The rules of the game are to insert numbers in such a way that every number appears once in each horizontal and vertical line and the inner square.

Profiling and Analysis

The following program was run on Matrix command line without any modification to the original code.

Easy Problem

   
command: ./Sudoku sample-puzzle-1

Input:

0 6 0 0 0 0 9 7 2
0 5 0 0 0 2 0 0 3
0 7 0 3 9 0 5 0 0
2 0 0 0 0 5 4 0 8
0 0 0 0 0 0 0 0 0
3 0 1 8 0 0 0 0 6
0 0 4 0 2 3 0 8 0
7 0 0 9 0 0 0 2 0
9 2 5 0 0 0 0 4 0

Solution:

1 6 3 4 5 8 9 7 2
4 5 9 7 1 2 8 6 3
8 7 2 3 9 6 5 1 4
2 9 7 1 6 5 4 3 8
5 8 6 2 3 4 1 9 7
3 4 1 8 7 9 2 5 6
6 1 4 5 2 3 7 8 9
7 3 8 9 4 1 6 2 5
9 2 5 6 8 7 3 4 1
    

Flat Profile - Easy

From this flat profile we can see that most of the functions being called were for checks of rows and columns with the third most called function being placeNum(int,int). As the problem complexity was low, the program completed quickly with far less calls compared to the hard problem.

Flat profile:

Each sample counts as 0.01 seconds.
 no time accumulated

  %   cumulative   self              self     total
 time   seconds   seconds    calls  Ts/call  Ts/call  name
  0.00      0.00     0.00     4539     0.00     0.00  checkRow(int, int)
  0.00      0.00     0.00     1620     0.00     0.00  checkColumn(int, int)
  0.00      0.00     0.00     1120     0.00     0.00  placeNum(int, int)
  0.00      0.00     0.00      698     0.00     0.00  checkSquare(int, int, int)
  0.00      0.00     0.00      476     0.00     0.00  goBack(int&, int&)
  0.00      0.00     0.00        2     0.00     0.00  print(int (*) [9])
  0.00      0.00     0.00        1     0.00     0.00  _GLOBAL__sub_I_sudoku
  0.00      0.00     0.00        1     0.00     0.00  _GLOBAL__sub_I_temp
  0.00      0.00     0.00        1     0.00     0.00  solveSudoku()
  0.00      0.00     0.00        1     0.00     0.00  storePositions()
  0.00      0.00     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      0.00     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
 

Granularity - Easy

The call graph gives us a further breakdown of the program and the number of calls that were made to the functions in order to solve the easy puzzle.

   
Call graph

granularity: each sample hit covers 4 byte(s) no time propagated

index % time    self  children    called     name
                0.00    0.00    4539/4539        placeNum(int, int) [7]
[5]      0.0    0.00    0.00    4539             checkRow(int, int) [5]
-----------------------------------------------
                0.00    0.00    1620/1620        placeNum(int, int) [7]
[6]      0.0    0.00    0.00    1620             checkColumn(int, int) [6]
-----------------------------------------------
                0.00    0.00    1120/1120        solveSudoku() [13]
[7]      0.0    0.00    0.00    1120             placeNum(int, int) [7]
                0.00    0.00    4539/4539        checkRow(int, int) [5]
                0.00    0.00    1620/1620        checkColumn(int, int) [6]
                0.00    0.00     698/698         checkSquare(int, int, int) [8]
-----------------------------------------------
                0.00    0.00     698/698         placeNum(int, int) [7]
[8]      0.0    0.00    0.00     698             checkSquare(int, int, int) [8]
-----------------------------------------------
                0.00    0.00     476/476         solveSudoku() [13]
[9]      0.0    0.00    0.00     476             goBack(int&, int&) [9]
-----------------------------------------------
                0.00    0.00       2/2           main [4]
[10]     0.0    0.00    0.00       2             print(int (*) [9]) [10]
-----------------------------------------------
                0.00    0.00       1/1           __do_global_ctors_aux [22]
[11]     0.0    0.00    0.00       1             _GLOBAL__sub_I_sudoku [11]
                0.00    0.00       1/1           __static_initialization_and_destruction_0(int, int) [15]
-----------------------------------------------
                0.00    0.00       1/1           __do_global_ctors_aux [22]
[12]     0.0    0.00    0.00       1             _GLOBAL__sub_I_temp [12]
                0.00    0.00       1/1           __static_initialization_and_destruction_0(int, int) [16]
-----------------------------------------------
                0.00    0.00       1/1           main [4]
[13]     0.0    0.00    0.00       1             solveSudoku() [13]
                0.00    0.00    1120/1120        placeNum(int, int) [7]
                0.00    0.00     476/476         goBack(int&, int&) [9]
-----------------------------------------------
                0.00    0.00       1/1           main [4]
[14]     0.0    0.00    0.00       1             storePositions() [14]
-----------------------------------------------
                0.00    0.00       1/1           _GLOBAL__sub_I_sudoku [11]
[15]     0.0    0.00    0.00       1             __static_initialization_and_destruction_0(int, int) [15]
-----------------------------------------------
                0.00    0.00       1/1           _GLOBAL__sub_I_temp [12]
[16]     0.0    0.00    0.00       1             __static_initialization_and_destruction_0(int, int) [16]
-----------------------------------------------

Index by function name

  [11] _GLOBAL__sub_I_sudoku  [13] solveSudoku()          [10] print(int (*) [9])
  [12] _GLOBAL__sub_I_temp    [14] storePositions()        [9] goBack(int&, int&)
   [6] checkColumn(int, int)  [15] __static_initialization_and_destruction_0(int, int) [5] checkRow(int, int)
   [8] checkSquare(int, int, int) [16] __static_initialization_and_destruction_0(int, int) [7] placeNum(int, int)
   

Hard Problem

   
command: ./Sudoku sample-puzzle-2-hard

Input:

0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 8 5
0 0 1 0 2 0 0 0 0
0 0 0 5 0 7 0 0 0
0 0 4 0 0 0 1 0 0
0 9 0 0 0 0 0 0 0
5 0 0 0 0 0 0 7 3
0 0 2 0 1 0 0 0 0
0 0 0 0 4 0 0 0 9

Output:

9 8 7 6 5 4 3 2 1
2 4 6 1 7 3 9 8 5
3 5 1 9 2 8 7 4 6
1 2 8 5 3 7 6 9 4
6 3 4 8 9 2 1 5 7
7 9 5 4 6 1 8 3 2
5 1 9 2 8 6 4 7 3
4 7 2 3 1 9 5 6 8
8 6 3 7 4 5 2 1 9
   

Flat Profile - Hard

From this flat profile we can see how the number of calls exploded as the complexity of the puzzle was increased with more missing numbers without changing the size of the grid. If the grid size was increased with an equal amount of missing numbers then the program would take far longer to complete with exponentially higher number of calls. As the problem became more complex, the previously low called functions in the easy version, checkSquare and goBack had a sudden spike in usage.

Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total
 time   seconds   seconds    calls   s/call   s/call  name
 46.41     21.66    21.66 622577597     0.00     0.00  checkRow(int, int)
 19.43     30.73     9.07 223365661     0.00     0.00  checkColumn(int, int)
 15.31     37.88     7.14 157353814     0.00     0.00  placeNum(int, int)
 13.11     43.99     6.12 100608583     0.00     0.00  checkSquare(int, int, int)
  3.10     45.44     1.45 69175252      0.00     0.00  goBack(int&, int&)
  2.64     46.67     1.23        1      1.23    46.67  solveSudoku()
  0.00     46.67     0.00        2      0.00     0.00  print(int (*) [9])
  0.00     46.67     0.00        1      0.00     0.00  _GLOBAL__sub_I_sudoku
  0.00     46.67     0.00        1      0.00     0.00  _GLOBAL__sub_I_temp
  0.00     46.67     0.00        1      0.00     0.00  storePositions()
  0.00     46.67     0.00        1      0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00     46.67     0.00        1      0.00     0.00  __static_initialization_and_destruction_0(int, int)

 

Granularity - Hard

The call graph gives us a more detailed look on where exactly most of the time was spent in solving the hard puzzle problem and which areas can be possible candidates for optimization.

   
Call graph

granularity: each sample hit covers 4 byte(s) for 0.02% of 46.67 seconds

index % time    self  children    called     name
                                                 <spontaneous>
[1]    100.0    0.00   46.67                         main [1]
                1.23   45.44       1/1               solveSudoku() [2]
                0.00    0.00       2/2               print(int (*) [9]) [11]
                0.00    0.00       1/1               storePositions() [14]
-----------------------------------------------
                1.23   45.44       1/1               main [1]
[2]    100.0    1.23   45.44       1                 solveSudoku() [2]
                7.14   36.85 157353814/157353814     placeNum(int, int) [3]
                1.45    0.00 69175252/69175252       goBack(int&, int&) [7]
-----------------------------------------------
                7.14   36.85 157353814/157353814     solveSudoku() [2]
[3]     94.3    7.14   36.85 157353814               placeNum(int, int) [3]
               21.66    0.00 622577597/622577597     checkRow(int, int) [4]
                9.07    0.00 223365661/223365661     checkColumn(int, int) [5]
                6.12    0.00 100608583/100608583     checkSquare(int, int, int) [6]
-----------------------------------------------
               21.66    0.00 622577597/622577597     placeNum(int, int) [3]
[4]     46.4   21.66    0.00 622577597               checkRow(int, int) [4]
-----------------------------------------------
                9.07    0.00 223365661/223365661     placeNum(int, int) [3]
[5]     19.4    9.07    0.00 223365661               checkColumn(int, int) [5]
-----------------------------------------------
                6.12    0.00 100608583/100608583     placeNum(int, int) [3]
[6]     13.1    6.12    0.00 100608583               checkSquare(int, int, int) [6]
-----------------------------------------------
                1.45    0.00 69175252/69175252       solveSudoku() [2]
[7]      3.1    1.45    0.00 69175252                goBack(int&, int&) [7]
-----------------------------------------------
                0.00    0.00       2/2               main [1]
[11]     0.0    0.00    0.00       2                 print(int (*) [9]) [11]
-----------------------------------------------
                0.00    0.00       1/1               __do_global_ctors_aux [22]
[12]     0.0    0.00    0.00       1                _GLOBAL__sub_I_sudoku [12]
                0.00    0.00       1/1              __static_initialization_and_destruction_0(int, int) [15]
-----------------------------------------------
                0.00    0.00       1/1              __do_global_ctors_aux [22]
[13]     0.0    0.00    0.00       1                _GLOBAL__sub_I_temp [13]
                0.00    0.00       1/1              __static_initialization_and_destruction_0(int, int) [16]
-----------------------------------------------
                0.00    0.00       1/1              main [1]
[14]     0.0    0.00    0.00       1                storePositions() [14]
-----------------------------------------------
                0.00    0.00       1/1              _GLOBAL__sub_I_sudoku [12]
[15]     0.0    0.00    0.00       1                __static_initialization_and_destruction_0(int, int) [15]
-----------------------------------------------
                0.00    0.00       1/1             _GLOBAL__sub_I_temp [13]
[16]     0.0    0.00    0.00       1               __static_initialization_and_destruction_0(int, int) [16]
-----------------------------------------------

Index by function name

  [12] _GLOBAL__sub_I_sudoku   [2] solveSudoku()          [11] print(int (*) [9])
  [13] _GLOBAL__sub_I_temp    [14] storePositions()        [7] goBack(int&, int&)
   [5] checkColumn(int, int)  [15] __static_initialization_and_destruction_0(int, int) [4] checkRow(int, in               t)
   [6] checkSquare(int, int, int) [16] __static_initialization_and_destruction_0(int, int) [3] placeNum(int               , int)

   

Analysis

The program was quite fast and had a really short run time for solving the given problem on a standard 9x9 block. This project was found on GitHub. It is GNU C++ compiler compatible and both the flat profile and call graph were generated on matrix successfully.

For the easy problem, the run time was quick as the inputted grid had more filled cells compared to the hard problem where most of the cells were set to 0. This increased the complexity scope and which is why the program took 46.67 seconds to complete.

From the hard puzzle call graph we can see that the function which could be the prime candidates for parallelization and optimization are the checkRow and checkColumn functions in which the program spends most of its time. Because of the type of mathematical problem set, this Sudoku solver can be an excellent application for a parallelization project.

Ray Tracing

Assignment 2

Under progress

Assignment 3

Under Progress