Difference between revisions of "OPS435 Ansible"

From CDOT Wiki
Jump to: navigation, search
(Ansible Playbook)
(Lab 9 Sign-off (Show Instructor))
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:OPS435]][[Category:rchan]][[Category:OPS435 Lab]]
 
[[Category:OPS435]][[Category:rchan]][[Category:OPS435 Lab]]
 +
= Objective =
 +
:# Install and configure Ansible on a controller Linux machine
 +
:# Explore Ansible's ad hoc commands
 +
:# Explore Ansible's built-in modules
 +
:# Explore and create Ansible playbooks
 +
 
= Overview =
 
= Overview =
* [https://www.ansible.com/overview/how-ansible-works Overview]
+
::Ansible is an agentless IT automation engine for automating cloud provisioning, configuration management, application deployment, intra-service orchestration, and many other IT system administration tasks.
::"Ansible is an IT automation engine that automates cloud provisioning, configuration management, application deployment, intra-service orchestration, and many other IT needs.
+
::Ansible uses no additional custom security infrastructure, and it uses a very simple human readable language called 'YAML', to compose an Ansible Playbook which allow you to describes the tasks you want to automate.
::Ansible was designed for multi-tier deployments since day one, and models your IT infrastructure by describing how all of your systems inter-relate, rather than just managing one system at a time.
+
 
::Ansible uses no agents and no additional custom security infrastructure, and it uses a very simple language called 'YAML', to compose an Ansible Playbook which allow you to describe your automation jobs in a very simple way."
+
= Reference =
 +
:* For more detail information about ansible, check out the ansible web site at [http://www.ansible.com. www.ansible.com]
 +
:* [https://www.ansible.com/overview/how-ansible-works Overview]
 +
:* [https://docs.ansible.com/ansible/latest/user_guide/index.html Ansible Latest User Guide]
 +
:* [https://proquest-safaribooksonline-com.libaccess.senecacollege.ca/book/operating-systems-and-server-administration/linux/9781785282300 Ansible Configuration Management] - Second Edition
 +
::* By: Daniel Hall, Publisher: Packt Publishing Pub.
 +
::* Date: April 27, 2015,ISBN-13: 978-1-78528-230-0
 +
::* Pages in Print Edition: 122
  
For more detail information about ansible, check out the ansible web site at [http://www.ansible.com. www.ansible.com]
+
= System requirements =
 +
* You must have at lease two networked machines
 +
** control machine - run ansible to configure remote node - need Ansible 2.x (latest version 2.7)
 +
** managed machine(s) - to be managed by the control node
 +
* You should be able to ssh from your control machine as a regular user to any of your remote machines as regular user without supplying a login password.
 +
* You account on the remote machine should be a sudoer and can run sudo without password.
 +
* You should also be to ssh from your control machine as a regular user to any of your remote machines as root without supplying a login password
 +
* Python 2.7+ on all nodes
  
= Objective =
 
* Install and configure Ansible on a controller Linux machine
 
* Explore Ansible's ad hoc commands
 
* Explore Ansible's built-in modules
 
* Explore and create Ansible playbooks
 
  
 
= Investigation I: Introduction to Ansible =
 
= Investigation I: Introduction to Ansible =
In this introduction, we explore the main components of the Ansible configuration management system and its operating environment. we also study a simple playbook for managing the configuration of a CentOS 7.x VM. For more detail information about ansible, check out the ansible web site at [https://www.ansible.com. https://www.ansible.com]
+
: In this introduction, we explore the main components of the Ansible configuration management system and its operating environment. we also study a simple playbook for managing the configuration of a CentOS 7.x VM.  
 +
: You need at least two VMs for this lab: one VM to be used as the control machine and one or more VMs to be used as the managed machines. You only need to install Ansible on the control machine.  
  
 
== Key Concepts when using Ansible==
 
== Key Concepts when using Ansible==
* YAML - a human-readable data serialization language & is commonly used for configuration files. To know more, your can check out the [https://en.wikipedia.org/wiki/YAML wikipedia page here]
+
* YAML - a human-readable data serialization language use by Ansible's playbooks. To know more, your can check out the [https://en.wikipedia.org/wiki/YAML wikipedia page here]
* Control machine - (Management node)
+
* Control machine - the host on which you use Ansible to execute tasks on the managed machines
* Remote machine - (managed node)
+
* Managed machine - a host that is configured by the control machine
* playbook - contains one or multiple plays, each of which define the work to be done for a configuration on a managed server. Playbooks are written in YAML. Every play in the playbook is created with environment-specific parameters for the target machines; there are no standard plays.
 
* Inventory file - defines the hosts and groups of hosts upon which commands, modules, and tasks in a playbook operate.
 
 
* [[OPS435 Sample Ansible Hosts file|Hosts file]] - contains information about machines to be managed - click [[OPS435 Sample Ansible Hosts file | here]] for sample hosts file
 
* [[OPS435 Sample Ansible Hosts file|Hosts file]] - contains information about machines to be managed - click [[OPS435 Sample Ansible Hosts file | here]] for sample hosts file
* Ad hoc commands
+
* Ad hoc commands - a simple one-off task:
 
** <u><b>shell commands</b></u>
 
** <u><b>shell commands</b></u>
 
*** ansible 192.168.99.153 -a 'date'
 
*** ansible 192.168.99.153 -a 'date'
 
*** ansible 192.168.99.153 -a 'df'  
 
*** ansible 192.168.99.153 -a 'df'  
 
*** ansible 192.168.99.153 -a 'iptables -L -n -v' -u root
 
*** ansible 192.168.99.153 -a 'iptables -L -n -v' -u root
* Built-in modules
+
* Built-in modules - code that performs a particular task such as copy a file, installing a package, etc:
 
** <u><b>copy module</b></u>
 
** <u><b>copy module</b></u>
 
*** ansible 192.168.99.153 -m copy -a "src=/ops435/ansible.txt dest=/tmp/ansible.txt"
 
*** ansible 192.168.99.153 -m copy -a "src=/ops435/ansible.txt dest=/tmp/ansible.txt"
 
** <u><b>Package management</b></u>
 
** <u><b>Package management</b></u>
 
*** ansible 192.168.99.153 -m yum -a "name=epel-release state=latest"
 
*** ansible 192.168.99.153 -m yum -a "name=epel-release state=latest"
* Running Ansible Playbooks
+
* Playbooks - contains one or multiple plays, each play defines a set of repeatable tasks on one or more managed machines. Playbooks are written in YAML. Every play in the playbook is created with environment-specific parameters for the target machines: 
 
** ansible-playbook -i 192.168.99.153, setup_webserver.yaml
 
** ansible-playbook -i 192.168.99.153, setup_webserver.yaml
 
** ansible-playbook firstrun.yaml
 
** ansible-playbook firstrun.yaml
 
+
== Hardware and software required
 
== Part 1: Installing Ansible on CentOS 7 ==
 
== Part 1: Installing Ansible on CentOS 7 ==
: run the command yum install ansible as root. You may have installed the following dependent packages:<source lang="python">
+
: You only need to install the "ansible" package on your control VM.
 
+
:* Login as a regular user, change to the directory ~/ops435/lab9
--> Finished Dependency Resolution
+
:* Issue the following command to install the "ansible" package: <source lang="bash">  
 +
sudo yum install ansible -y
 +
</source>
  
 +
:* You may have to install the following dependent packages:<source lang="bash">
 
Dependencies Resolved
 
Dependencies Resolved
  
Line 91: Line 108:
 
               [-a MODULE_ARGS] [-m MODULE_NAME]
 
               [-a MODULE_ARGS] [-m MODULE_NAME]
 
               pattern
 
               pattern
 
+
...
Define and run a single task 'playbook' against a set of hosts
 
 
 
positional arguments:
 
  pattern              host pattern
 
 
 
optional arguments:
 
  --ask-vault-pass      ask for vault password
 
  --list-hosts          outputs a list of matching hosts; does not execute
 
                        anything else
 
  --playbook-dir BASEDIR
 
                        Since this tool does not use playbooks, use this as a
 
                        substitute playbook directory.This sets the relative
 
                        path for many features including roles/ group_vars/
 
                        etc.
 
  --syntax-check        perform a syntax check on the playbook, but do not
 
                        execute it
 
  --vault-id VAULT_IDS  the vault identity to use
 
  --vault-password-file VAULT_PASSWORD_FILES
 
                        vault password file
 
  --version            show program's version number, config file location,
 
                        configured module search path, module location,
 
                        executable location and exit
 
  -B SECONDS, --background SECONDS
 
                        run asynchronously, failing after X seconds
 
                        (default=N/A)
 
  -C, --check          don't make any changes; instead, try to predict some
 
                        of the changes that may occur
 
  -D, --diff            when changing (small) files and templates, show the
 
                        differences in those files; works great with --check
 
  -M MODULE_PATH, --module-path MODULE_PATH
 
                        prepend colon-separated path(s) to module library (def
 
                        ault=~/.ansible/plugins/modules:/usr/share/ansible/plu
 
                        gins/modules)
 
  -P POLL_INTERVAL, --poll POLL_INTERVAL
 
                        set the poll interval if using -B (default=15)
 
  -a MODULE_ARGS, --args MODULE_ARGS
 
                        module arguments
 
  -e EXTRA_VARS, --extra-vars EXTRA_VARS
 
                        set additional variables as key=value or YAML/JSON, if
 
                        filename prepend with @
 
  -f FORKS, --forks FORKS
 
                        specify number of parallel processes to use
 
                        (default=5)
 
  -h, --help            show this help message and exit
 
  -i INVENTORY, --inventory INVENTORY, --inventory-file INVENTORY
 
                        specify inventory host path or comma separated host
 
                        list. --inventory-file is deprecated
 
  -l SUBSET, --limit SUBSET
 
                        further limit selected hosts to an additional pattern
 
  -m MODULE_NAME, --module-name MODULE_NAME
 
                        module name to execute (default=command)
 
  -o, --one-line        condense output
 
  -t TREE, --tree TREE  log output to this directory
 
  -v, --verbose        verbose mode (-vvv for more, -vvvv to enable
 
                        connection debugging)
 
 
 
Privilege Escalation Options:
 
  control how and which user you become as on target hosts
 
 
 
  --become-method BECOME_METHOD
 
                        privilege escalation method to use (default=sudo), use
 
                        `ansible-doc -t become -l` to list valid choices.
 
  --become-user BECOME_USER
 
                        run operations as this user (default=root)
 
  -K, --ask-become-pass
 
                        ask for privilege escalation password
 
  -b, --become          run operations with become (does not imply password
 
                        prompting)
 
 
 
Connection Options:
 
  control as whom and how to connect to hosts
 
 
 
  --private-key PRIVATE_KEY_FILE, --key-file PRIVATE_KEY_FILE
 
                        use this file to authenticate the connection
 
  --scp-extra-args SCP_EXTRA_ARGS
 
                        specify extra arguments to pass to scp only (e.g. -l)
 
  --sftp-extra-args SFTP_EXTRA_ARGS
 
                        specify extra arguments to pass to sftp only (e.g. -f,
 
                        -l)
 
  --ssh-common-args SSH_COMMON_ARGS
 
                        specify common arguments to pass to sftp/scp/ssh (e.g.
 
                        ProxyCommand)
 
  --ssh-extra-args SSH_EXTRA_ARGS
 
                        specify extra arguments to pass to ssh only (e.g. -R)
 
  -T TIMEOUT, --timeout TIMEOUT
 
                        override the connection timeout in seconds
 
                        (default=10)
 
  -c CONNECTION, --connection CONNECTION
 
                        connection type to use (default=smart)
 
  -k, --ask-pass        ask for connection password
 
  -u REMOTE_USER, --user REMOTE_USER
 
                        connect as this user (default=None)
 
 
 
Some modules do not make sense in Ad-Hoc (include, meta, etc)
 
 
</source>
 
</source>
: There are a lots of options when running Ansible. Let's move on to try a few simple ones.
+
: Take a look of all the available command line options for the "ansible" command. There are a lots of options when running Ansible. Let's move on to try a few simple ones.
  
 
== Part 2: Sample runs for some of the Ad hoc commands ==
 
== Part 2: Sample runs for some of the Ad hoc commands ==
Line 214: Line 137:
  
 
== Part 3: Sample runs for using some Ansible's built-in modules ==
 
== Part 3: Sample runs for using some Ansible's built-in modules ==
: "yum" is a built-in ansible module. You can get detail information about an ansible module with the following command:<source lang="bash">
+
: "yum" is a built-in ansible module. You can get a complete list of all the ansible modules installed on you system with the following command:<source lang="bash">
     ansible-doc yum
+
    ansisble-doc --list_files
 +
</source>
 +
: You can also get the detail information about any ansible module with the following command:<source lang="bash">
 +
     ansible-doc module_name
 +
 
 +
    e.g. ansible_doc yum
 
</source>
 
</source>
 
: The following command demonstrates how to install the "epel-release" package with the "yum" module:
 
: The following command demonstrates how to install the "epel-release" package with the "yum" module:
Line 288: Line 216:
 
: * Playbook tells Ansible what to execute by which user on the remote machine.
 
: * Playbook tells Ansible what to execute by which user on the remote machine.
 
: * Playbook is like a to-do list for Ansible
 
: * Playbook is like a to-do list for Ansible
: * Playbook is write in a simple human readable language called "YAML".
+
: * Playbook is written "YAML".
 
: * Playbook links a task to an ansible module and provide needed arguments to the module which requires them.
 
: * Playbook links a task to an ansible module and provide needed arguments to the module which requires them.
  
===Part 1: A playbook to update the /etc/motd file ===
+
==Part 1: A playbook to update the /etc/motd file ==
 
Name: motd-play.yml
 
Name: motd-play.yml
 
<pre>
 
<pre>
Line 363: Line 291:
  
 
</pre>
 
</pre>
 +
= Investigation III: Using Playbook to config a OPS435 Linux machine =
 +
: You have just installed the latest version of CentOS 7.x on a VM with GNOME Desktop. You need to configure it so that you can use it for doing the Labs for OPS435. The following configuration need to be done on that VM:
 +
:* update all the packages installed on the VM
 +
:* install extra packages repository for enterprise Linux
 +
:* install python3 if it is not already installed
 +
:* set the host name to your Seneca user name
 +
:* install the git package
 +
:* create a new user with your Seneca_id with sudo access
 +
:* configure the new user account so that you can ssh to it without password
 +
:* setup a directory structs for completing and organizing labs as shown below:<source lang="bash">
 +
      /home/[seneca_id]/ops435/lab0
 +
      /home/[seneca_id]/ops435/lab1
 +
      /home/[seneca_id]/ops435/lab2
 +
      /home/[seneca_id]/ops435/lab3
 +
      /home/[seneca_id]/ops435/lab4
 +
      /home/[seneca_id]/ops435/lab5
 +
      /home/[seneca_id]/ops435/lab6
 +
      /home/[seneca_id]/ops435/lab7
 +
      /home/[seneca_id]/ops435/lab8
 +
      /home/[seneca_id]/ops435/lab9
 +
</source>
 +
:* create a playbook named "config_ops435.yml" to perform the tasks mentioned above.
 +
:* test your playbook and capture its output when it complete without error.
  
= Questions =
+
= Lab 9 Sign-off (Show Instructor) =
= System requirements =
+
== Have the following items ready to show your instructor: ==
* You must have at lease two networked machines
+
: * The Ansible playbook called "config_ops435.yml" for configuring the VM mentioned in Lab 1.
** control node - run ansible to configure remote node - need Ansible 2.x (latest version 2.7)
+
: * The result of running the playbook "config_ops435.yml". Save the result in a file called "lab9_[seneca_id].txt"
** remote nodes - to be managed by the control node
+
== Upload the following files to blackboard ==
* You should be to ssh from your control node as a regular user to any of your remote nodes as root user without supplying a login password.
+
: * config_ops435.yml
* Python 2.7+ on all nodes
+
: * lab9_[seneca_id].txt
= Reference =
 
* [https://proquest-safaribooksonline-com.libaccess.senecacollege.ca/book/operating-systems-and-server-administration/linux/9781785282300 Ansible Configuration Management] - Second Edition By: Daniel Hall, Publisher: Packt Publishing Pub. Date: April 27, 2015,ISBN-13: 978-1-78528-230-0
 
 
 
Pages in Print Edition: 122
 
* [https://docs.ansible.com/ansible/latest/user_guide/index.html Ansible Latest User Guide]
 

Latest revision as of 17:10, 24 November 2019

Objective

  1. Install and configure Ansible on a controller Linux machine
  2. Explore Ansible's ad hoc commands
  3. Explore Ansible's built-in modules
  4. Explore and create Ansible playbooks

Overview

Ansible is an agentless IT automation engine for automating cloud provisioning, configuration management, application deployment, intra-service orchestration, and many other IT system administration tasks.
Ansible uses no additional custom security infrastructure, and it uses a very simple human readable language called 'YAML', to compose an Ansible Playbook which allow you to describes the tasks you want to automate.

Reference

  • By: Daniel Hall, Publisher: Packt Publishing Pub.
  • Date: April 27, 2015,ISBN-13: 978-1-78528-230-0
  • Pages in Print Edition: 122

System requirements

  • You must have at lease two networked machines
    • control machine - run ansible to configure remote node - need Ansible 2.x (latest version 2.7)
    • managed machine(s) - to be managed by the control node
  • You should be able to ssh from your control machine as a regular user to any of your remote machines as regular user without supplying a login password.
  • You account on the remote machine should be a sudoer and can run sudo without password.
  • You should also be to ssh from your control machine as a regular user to any of your remote machines as root without supplying a login password
  • Python 2.7+ on all nodes


Investigation I: Introduction to Ansible

In this introduction, we explore the main components of the Ansible configuration management system and its operating environment. we also study a simple playbook for managing the configuration of a CentOS 7.x VM.
You need at least two VMs for this lab: one VM to be used as the control machine and one or more VMs to be used as the managed machines. You only need to install Ansible on the control machine.

Key Concepts when using Ansible

  • YAML - a human-readable data serialization language use by Ansible's playbooks. To know more, your can check out the wikipedia page here
  • Control machine - the host on which you use Ansible to execute tasks on the managed machines
  • Managed machine - a host that is configured by the control machine
  • Hosts file - contains information about machines to be managed - click here for sample hosts file
  • Ad hoc commands - a simple one-off task:
    • shell commands
      • ansible 192.168.99.153 -a 'date'
      • ansible 192.168.99.153 -a 'df'
      • ansible 192.168.99.153 -a 'iptables -L -n -v' -u root
  • Built-in modules - code that performs a particular task such as copy a file, installing a package, etc:
    • copy module
      • ansible 192.168.99.153 -m copy -a "src=/ops435/ansible.txt dest=/tmp/ansible.txt"
    • Package management
      • ansible 192.168.99.153 -m yum -a "name=epel-release state=latest"
  • Playbooks - contains one or multiple plays, each play defines a set of repeatable tasks on one or more managed machines. Playbooks are written in YAML. Every play in the playbook is created with environment-specific parameters for the target machines:
    • ansible-playbook -i 192.168.99.153, setup_webserver.yaml
    • ansible-playbook firstrun.yaml

== Hardware and software required

Part 1: Installing Ansible on CentOS 7

You only need to install the "ansible" package on your control VM.
  • Login as a regular user, change to the directory ~/ops435/lab9
  • Issue the following command to install the "ansible" package:
     
    sudo yum install ansible -y
  • You may have to install the following dependent packages:
    Dependencies Resolved
    
    =====================================================================================================================
     Package                             Arch                  Version                       Repository             Size
    =====================================================================================================================
    Installing:
     ansible                             noarch                2.9.1-1.el7                   epel                   17 M
    Installing for dependencies:
     python-babel                        noarch                0.9.6-8.el7                   base                  1.4 M
     python-cffi                         x86_64                1.6.0-5.el7                   base                  218 k
     python-enum34                       noarch                1.0.4-1.el7                   base                   52 k
     python-httplib2                     noarch                0.9.2-1.el7                   extras                115 k
     python-idna                         noarch                2.4-1.el7                     base                   94 k
     python-jinja2                       noarch                2.7.2-4.el7                   base                  519 k
     python-markupsafe                   x86_64                0.11-10.el7                   base                   25 k
     python-paramiko                     noarch                2.1.1-9.el7                   base                  269 k
     python-ply                          noarch                3.4-11.el7                    base                  123 k
     python-pycparser                    noarch                2.14-1.el7                    base                  104 k
     python2-cryptography                x86_64                1.7.2-2.el7                   base                  502 k
     python2-jmespath                    noarch                0.9.0-3.el7                   extras                 39 k
     python2-pyasn1                      noarch                0.1.9-7.el7                   base                  100 k
     sshpass                             x86_64                1.06-2.el7                    extras                 21 k
    
    Transaction Summary
    =====================================================================================================================
    Install  1 Package (+14 Dependent packages)
    
    Total download size: 21 M
    Installed size: 120 M
    Is this ok [y/d/N]:
To confirm that you have Ansible installed, try the following command:
[rchan@c7-rchan ~]$ ansible --help
usage: ansible [-h] [--version] [-v] [-b] [--become-method BECOME_METHOD]
               [--become-user BECOME_USER] [-K] [-i INVENTORY] [--list-hosts]
               [-l SUBSET] [-P POLL_INTERVAL] [-B SECONDS] [-o] [-t TREE] [-k]
               [--private-key PRIVATE_KEY_FILE] [-u REMOTE_USER]
               [-c CONNECTION] [-T TIMEOUT]
               [--ssh-common-args SSH_COMMON_ARGS]
               [--sftp-extra-args SFTP_EXTRA_ARGS]
               [--scp-extra-args SCP_EXTRA_ARGS]
               [--ssh-extra-args SSH_EXTRA_ARGS] [-C] [--syntax-check] [-D]
               [-e EXTRA_VARS] [--vault-id VAULT_IDS]
               [--ask-vault-pass | --vault-password-file VAULT_PASSWORD_FILES]
               [-f FORKS] [-M MODULE_PATH] [--playbook-dir BASEDIR]
               [-a MODULE_ARGS] [-m MODULE_NAME]
               pattern
...
Take a look of all the available command line options for the "ansible" command. There are a lots of options when running Ansible. Let's move on to try a few simple ones.

Part 2: Sample runs for some of the Ad hoc commands

[rchan@centos7 ansible]$ ansible 192.168.99.153 -m copy -a "src=/home/rchan/ops435/ansible/ansible.txt dest=/tmp/ansible.txt"
192.168.99.153 | SUCCESS => {
    "changed": true, 
    "checksum": "837affc90674fb92cdb0ebac6e49ad31a586b37e", 
    "dest": "/tmp/ansible.txt", 
    "gid": 1001, 
    "group": "rchan", 
    "md5sum": "78ae49d77d28d06173cf2194a3909732", 
    "mode": "0664", 
    "owner": "rchan", 
    "secontext": "unconfined_u:object_r:user_home_t:s0", 
    "size": 106, 
    "src": "/home/rchan/.ansible/tmp/ansible-tmp-1542902119.15-117618539513309/source", 
    "state": "file", 
    "uid": 1001
}
192.168.99.153 is the remote machine's IP address.
"-m copy" tells ansible to use the copy module
after '-a' is the arguments to the copy module, which specify the source file and the destination for the copy action.
If you got the same "SUCCESS" message, login to the remote machine (in this example, it is 192.168.99.153) and check the directory "/tmp" for the file ansible.txt.

Part 3: Sample runs for using some Ansible's built-in modules

"yum" is a built-in ansible module. You can get a complete list of all the ansible modules installed on you system with the following command:
    ansisble-doc --list_files
You can also get the detail information about any ansible module with the following command:
    ansible-doc module_name

    e.g. ansible_doc yum
The following command demonstrates how to install the "epel-release" package with the "yum" module:
[rchan@centos7 ansible]$ ansible 192.168.99.153 -m yum -a "name=epel-release state=present"
192.168.99.153 | SUCCESS => {
    "changed": false, 
    "msg": "", 
    "rc": 0, 
    "results": [
        "epel-release-7-11.noarch providing epel-release is already installed"
    ]
}

[rchan@centos7 ansible]$ ansible 192.168.99.153 -m yum -a "name=epel-release state=present" -u root
192.168.99.153 | SUCCESS => {
    "changed": false, 
    "msg": "", 
    "rc": 0, 
    "results": [
        "epel-release-7-11.noarch providing epel-release is already installed"
    ]
}

[rchan@centos7 ansible]$ ansible 192.168.99.153 -m yum -a "name=epel-release state=latest" -u root
192.168.99.153 | SUCCESS => {
    "changed": false, 
    "msg": "", 
    "rc": 0, 
    "results": [
        "All packages providing epel-release are up to date", 
        ""
    ]
}

Part 4: Gather software and hardware information available on remote machine

One of the main ansible module is called "setup", it is automatically called by ansible playbook to gather useful "facts" about remote hosts that can be used in ansible playbooks. It can also be executed directly by the ansible command (/usr/bin/ansible) to check what "facts" are available to a host.
[rchan@centos7 ansible]$ ansible 192.168.99.153 -m setup
192.168.99.153 | SUCCESS => {
    "ansible_facts": {
        "ansible_all_ipv4_addresses": [
            "192.168.122.99", 
            "192.168.99.153"
        ], 
        "ansible_all_ipv6_addresses": [
            "fe80::5054:ff:fe11:6767", 
            "fe80::5054:ff:fe8c:b67c"
        ], 
        "ansible_architecture": "x86_64", 
        "ansible_bios_date": "04/01/2014", 
        "ansible_bios_version": "1.9.1-5.el7_3.2", 
        "ansible_cmdline": {
            "BOOT_IMAGE": "/vmlinuz-3.10.0-862.14.4.el7.x86_64", 
            "LANG": "en_CA.UTF-8", 
            "console": "ttyS0", 
...
        "ansible_userspace_bits": "64", 
        "ansible_virtualization_role": "guest", 
        "ansible_virtualization_type": "kvm", 
        "module_setup": true
    }, 
    "changed": false
}

Click here for complete contents of the above

Investigation II: Ansible Playbook

What is a playbook?

* Playbook is one of the core features of Ansible.
* Playbook tells Ansible what to execute by which user on the remote machine.
* Playbook is like a to-do list for Ansible
* Playbook is written "YAML".
* Playbook links a task to an ansible module and provide needed arguments to the module which requires them.

Part 1: A playbook to update the /etc/motd file

Name: motd-play.yml

---
- hosts: 192.168.99.153
  user: root
  vars:
    apache_version: 2.6
    motd_warning: 'WARNING: use by ICT faculty/students only.'
    testserver: yes
  tasks:
    - name: setup a MOTD
      copy: 
        dest: /etc/motd
        content: "{{ motd_warning }}"

Sample Run:

[rchan@centos7 playbooks]$ ansible-playbook motd-play.yml

PLAY [192.168.99.153] **********************************************************

TASK [Gathering Facts] *********************************************************
ok: [192.168.99.153]

TASK [setup a MOTD] ************************************************************
changed: [192.168.99.153]

PLAY RECAP *********************************************************************
192.168.99.153             : ok=2    changed=1    unreachable=0    failed=0   

Part 2: A playbook to install and start Apache Server

Name: httpd-play.yml

---
- hosts: 192.168.99.153
  user: root
  vars:
    apache_version: 2.6
    motd_warning: 'WARNING: use by ICT faculty/students only.'
    testserver: yes
  tasks:
    - name: install apache
      action: yum name=httpd state=installed
    
    - name: restart apache
      service: 
        name: httpd
        state: restarted

Sample Run:

[rchan@centos7 playbooks]$ ansible-playbook httpd-play.yml

PLAY [192.168.99.153] **********************************************************

TASK [Gathering Facts] *********************************************************
ok: [192.168.99.153]

TASK [install apache] **********************************************************
changed: [192.168.99.153]

TASK [restart apache] **********************************************************
changed: [192.168.99.153]

PLAY RECAP *********************************************************************
192.168.99.153             : ok=3    changed=2    unreachable=0    failed=0   

Investigation III: Using Playbook to config a OPS435 Linux machine

You have just installed the latest version of CentOS 7.x on a VM with GNOME Desktop. You need to configure it so that you can use it for doing the Labs for OPS435. The following configuration need to be done on that VM:
  • update all the packages installed on the VM
  • install extra packages repository for enterprise Linux
  • install python3 if it is not already installed
  • set the host name to your Seneca user name
  • install the git package
  • create a new user with your Seneca_id with sudo access
  • configure the new user account so that you can ssh to it without password
  • setup a directory structs for completing and organizing labs as shown below:
          /home/[seneca_id]/ops435/lab0
          /home/[seneca_id]/ops435/lab1
          /home/[seneca_id]/ops435/lab2
          /home/[seneca_id]/ops435/lab3
          /home/[seneca_id]/ops435/lab4
          /home/[seneca_id]/ops435/lab5
          /home/[seneca_id]/ops435/lab6
          /home/[seneca_id]/ops435/lab7
          /home/[seneca_id]/ops435/lab8
          /home/[seneca_id]/ops435/lab9
  • create a playbook named "config_ops435.yml" to perform the tasks mentioned above.
  • test your playbook and capture its output when it complete without error.

Lab 9 Sign-off (Show Instructor)

Have the following items ready to show your instructor:

* The Ansible playbook called "config_ops435.yml" for configuring the VM mentioned in Lab 1.
* The result of running the playbook "config_ops435.yml". Save the result in a file called "lab9_[seneca_id].txt"

Upload the following files to blackboard

* config_ops435.yml
* lab9_[seneca_id].txt