Difference between revisions of "SPO600 Vectorization Lab"
Chris Tyler (talk | contribs) |
Chris Tyler (talk | contribs) |
||
Line 1: | Line 1: | ||
− | [[Category:SPO600 Labs]] | + | [[Category:SPO600 Labs - Retired]] |
{{Admon/lab|Purpose of this Lab|This lab is designed to explore single instruction/multiple data (SIMD) vectorization, and the auto-vectorization capabilities of the GCC compiler.}} | {{Admon/lab|Purpose of this Lab|This lab is designed to explore single instruction/multiple data (SIMD) vectorization, and the auto-vectorization capabilities of the GCC compiler.}} | ||
{{Admon/tip|Tiny Lab|This is intended to be a very short lab. Don't overcomplicate it!}} | {{Admon/tip|Tiny Lab|This is intended to be a very short lab. Don't overcomplicate it!}} | ||
+ | {{Admon/important|This lab is not used in the current semester.|Please refer to the other labs in the [[:Category:SPO600 Labs|SPO600 Labs]] category.}} | ||
+ | |||
== Optional Lab (Recommended!) == | == Optional Lab (Recommended!) == |
Latest revision as of 12:52, 2 October 2019
Optional Lab (Recommended!)
- Write a short program that creates two 1000-element integer arrays and fills them with random numbers in the range -1000 to +1000, then sums those two arrays element-by-element to a third array, and finally sums the third array and prints the result.
- Compile this program on one of the AArch64/ARM64 SPO600 Servers in such a way that the code is auto-vectorized.
- Annotate the emitted code (i.e., obtain a dissassembly via
objdump -d
and add comments to the instructions in<main>
explaining what the code does). - Write a blog post discussing your findings. Include:
- The source code
- The compiler command line used to build the code
- Your annotated dissassembly listing - Prove that the code is vectorized, for example, by pointing out the use of vector registers and SIMD instructions.
- Your reflections on the experience and the results
Resources
- Auto-Vectorization in GCC - Main project page for the GCC auto-vectorizer.
- Auto-vectorization with gcc 4.7 - An excellent discussion of the capabilities and limitations of the GCC auto-vectorizer, intrinsics for providing hints to GCC, and other code pattern changes that can improve results. Note that there has been some improvement in the auto-vectorizer since this article was written. This article is strongly recommended.
- Intel (Auto)Vectorization Tutorial - this deals with the Intel compiler (ICC) but the general technical discussion is valid for other compilers such as gcc and llvm