Difference between revisions of "GAM670/DPS905 Weekly Schedule 20121"

From CDOT Wiki
Jump to: navigation, search
(GAM670/DPS905 -- Weekly Schedule 20121)
(GAM670/DPS905 -- Weekly Schedule 20121)
Line 155: Line 155:
  
 
== Week 5 - Feb 6 ==
 
== Week 5 - Feb 6 ==
 +
=== This Week ===
 +
* The Pipeline
 +
* Vertex Shaders
 +
* Pixel Shaders
 +
 +
=== To Do ===
 +
<!--
 +
* reorganize framework code so that vertex shader receives product of world, view, and projection matrices
 +
** store viewProjection matrix as an instance variable in Display
 +
** add viewProjection query to Display to extract product of view and projection matrices
 +
** retrieve viewProjection in *::draw() method
 +
** pre-multiply viewProjection by world to obtain composite matrix to pass to vertex shader
 +
** add composite matrix to the constant table in the vertex shader
 +
* reorganize framework code to minimize duplication of heading normalization
 +
** perform normalization of heading in Display::beginDraw()
 +
-->
 +
 +
=== Resources ===
 +
 +
 +
== Week 6 - Feb 13 ==
 +
=== This Week ===
 
* [http://msdn.microsoft.com/en-us/library/bb147178%28v=VS.85%29.aspx Mathematics of Lighting]
 
* [http://msdn.microsoft.com/en-us/library/bb147178%28v=VS.85%29.aspx Mathematics of Lighting]
* Vertex Shaders
 
 
* Lighting in Vertex Shaders
 
* Lighting in Vertex Shaders
 
** Notation
 
** Notation
Line 212: Line 233:
 
*** [http://msdn.microsoft.com/en-us/library/bb509617%28v=vs.85%29.aspx length()] - length of a vector
 
*** [http://msdn.microsoft.com/en-us/library/bb509617%28v=vs.85%29.aspx length()] - length of a vector
 
*** [http://msdn.microsoft.com/en-us/library/bb509645%28v=vs.85%29.aspx saturate()] - clamp scalar, vector, or matrix to [0, 1]
 
*** [http://msdn.microsoft.com/en-us/library/bb509645%28v=vs.85%29.aspx saturate()] - clamp scalar, vector, or matrix to [0, 1]
 
=== To Do ===
 
* reorganize framework code so that vertex shader receives product of world, view, and projection matrices
 
** store viewProjection matrix as an instance variable in Display
 
** add viewProjection query to Display to extract product of view and projection matrices
 
** retrieve viewProjection in *::draw() method
 
** pre-multiply viewProjection by world to obtain composite matrix to pass to vertex shader
 
** add composite matrix to the constant table in the vertex shader
 
* reorganize framework code to minimize duplication of heading normalization
 
** perform normalization of heading in Display::beginDraw()
 
 
=== Resources ===
 
 
 
== Week 6 - Feb 13 ==
 
=== This Week ===
 
 
=== To Do ===
 
=== To Do ===
 
=== Resources ===
 
=== Resources ===

Revision as of 07:50, 25 January 2012


GAM670/DPS905 | Weekly Schedule | Student List | Project Requirements | Teams and their Projects | Student Resources


GAM670/DPS905 -- Weekly Schedule 20121

Week 1 - Jan 8

This Week

  • Assignment Discussion
  • Suggested Enhancements
  • Review of the Base Code
    • Definition of a Framework
      • Modularity through stable interfaces
      • Re-usability through generic components
      • Extensibility through hook methods
      • Inversion of control - determines which application methods to invoke in response to external events
    • Framework Architecture
      • Modelling Layer
      • API Translation Layer
    • Notable Features of the Base Code
    • camera, sound, and light are also derived from the Frame class
    • textures attach at the object level
    • texture connection is uncoupled from drawing of the graphics primitives
    • reference frames are relative
    • very simple collision detection

To Do

  1. add your name to the student list
  2. create a team page that includes the semester number 20121
    • describe the game that you intend to develop
    • list the topics of interest to your team in developing its game
    • list the other topics of interest

Resources

Week 2 - Jan 16

This Week

  • Relative Reference Frames
    • Recursive calls
      Vector Frame::position()
      Matrix Frame::rotation()
      Matrix Frame::world()
    • Detaching from and attaching to a parent frame
      Frame::attachTo()
  • Geometry
    • Plane
      normal + constant - examples
      equation of a plane: dot(n, x) + D = 0
      positive side of a plane dot(n, x) + D > 0
  • Collision Detection
    types of colliders
    spheres
    planes
    axis-aligned bounding boxes
    oriented bounding boxes

To Do

  • Research the feature that you are going to add and prepare a plan of action
  • Prepare a team page for your team so that repos can be ordered
  • Add a section to your team page to track your project and solicit commentary

Resources

Week 3 - Jan 23

This Week

  • Collision Detection (cont'd)
    Shape
    Shape : Frame
    Shape::setRadius()
    Shape::getRadius()
    Shape::setRadius(float r);
    Shape::setRadius(float x, float y, float z);
    Shape::getRadius() const { return radius; }
    Shape::setPlane(Vector n, float d);
    Shape::setAxisAligned(Vector min, Vector max);
  • Comprehensive Camerawork
    rotation about an axis
    order of rotation matters
    Euler angles
    3-2-1 angles
    gimbal lock
    StephenSeefeld.net
    complex numbers
    solution of cubic equations 16th century
    two-dimensional representation
    matrix representation
    quaternions
    extension of complex numbers
    four-dimensional representation
    matrix representation
    geometric algebra (more abstract)
    Dorst's site
    Hitzer's site
  • Index Buffers
    amount of storage needed for vertex data
    duplication of vertex data
    indexing
    indexed primitives

To Do

Resources


Resources

Week 6 - Feb 13

This Week

  • Mathematics of Lighting
  • Lighting in Vertex Shaders
    • Notation
      Ga - global ambient color
      Ca - material ambient color
      Cd - material diffuse color
      Cs - material specular color
      Lai - ambient color of light i
      Ldi - diffuse color of light i
      Lsi - specular color of light i
      Ldiri - direction vector of light i
      N - normal to the surface at the vertex
      • Attenuation and Spotlight Factors
        • Atteni - attenuation of light i
        di - distance from light i
        di = |Ldiri|
        a0 - constant attenuation factor
        a1 - linear attenuation factor
        a2 - quadratic attenuation factor
        Atteni = 1/(a0 + a1 di + a2 di2)
        Atteni = [0, 1]
        • Spoti - spot factor of light i
        Spoti = {[ri - cos(phii/2)]/[cos(thetai/2) - cos(phii/2)]}fi
        ri - cosine of angle from axis of spotlighti
        ri = norm(- light direction in camera space) . norm(Ldiri)
        phii - penumbra (exterior cone) angle of spotlighti
        thetai - umbra (interior cone) angle of spotlighti
        fi - falloff factor of spotlighti
    • Blinn-Phong and Phong
      V - viewpoint vector
      V = norm(Cameraposition - Vertexposition)
    • Phong - account accurately for position of viewer
      Specular reflectance = (Ri . V)pi
      Ri - reflection vector
      Ri = 2 * (N . Ldiri) N - Ldiri
      pi - true specular power of light i
    • Blinn-Phong - use halfway vector instead of reflection vector - adjust power to compensate
      Specular reflectance = (N . Hi)p'i
      Hi - halfway vector
      Hi = norm(V + Ldiri)
      Hi = norm([0,0,1] + Ldiri) - less computationally intensive - assumes that camera is at infinity along z axis
      p'i - adjusted specular power of light i
    • Ambient
      Ca * ( Ga + sum [Lai * Atteni * Spoti] )
    • Diffuse
      Cd * sum [ Ldi * (N . Ldiri) * Atteni * Spoti ]
    • Specular
      Cs * sum [ Lsi * (N . Hi)p'i * Atteni * Spoti ] - Blinn-Phong
      Cs * sum [ Lsi * (Ri . V)pi * Atteni * Spoti ] - Phong
    • HLSL Intrinsic Functions

To Do

Resources

Week 7 - Feb 20

This Week

To Do

Resources

-->