Difference between revisions of "Console UI Core Classes - OOP344 20112"
(→CField) |
(→Objective) |
||
Line 26: | Line 26: | ||
Please note that the class definitions here are minimum requirement for the Core Classes and you are free to add any enhancements or features you find useful. However make sure that you discuss these enhancements with your professor to make sure they are feasible before implementation. | Please note that the class definitions here are minimum requirement for the Core Classes and you are free to add any enhancements or features you find useful. However make sure that you discuss these enhancements with your professor to make sure they are feasible before implementation. | ||
− | It is highly recommended to develop the classes in the order they are stated here. You must create your | + | It is highly recommended to develop the classes in the order they are stated here. You must create your own tester programs fore each class (if possible); However, close to due date of each release, a tester program is provided to help you verify the functionality of your classes. Executables of the test programs are available on matrix to show you how it is supposed to run. |
Start by creating mock-up classes (class declaration and definition with empty methods that only compiles and don't do anything). | Start by creating mock-up classes (class declaration and definition with empty methods that only compiles and don't do anything). | ||
Line 34: | Line 34: | ||
* Use includes only in files in which the actual header file code is used. | * Use includes only in files in which the actual header file code is used. | ||
* '''Avoid "just in case" includes.''' | * '''Avoid "just in case" includes.''' | ||
+ | |||
=DueDates= | =DueDates= | ||
==Adding Buffering logic to your iol logic== | ==Adding Buffering logic to your iol logic== |
Revision as of 22:16, 20 July 2011
OOP344 | Weekly Schedule | Student List | Teams | Project | Student Resources
Under Construction!
Release 0.1
Before anything, go to YourRepository/branches/fardad/bio_additions_changes and open iol.h and iol.c.
- Replace your iol.h content with mine (if you have any custom additions to your iol.h that mine does not cover it, add your custom prototypes and definitions. (note that my iol.h covers 4 platforms [compiler/operating systems]).
- Add the memory buffering logic that prevents flickering (the first 74 lines of code) to the top of your oil.c logic; (getBufChar,setBufChar, putMemch, scrbuf, curRow, curCol, bufrows, bufcols, alocScrBufMem, clrMemScr, freeScrBufMem, iol_capture, iol_restore, iol_getCurPos, iol_freeCapture)
- Replace your platform dependent logic with mine ( line 76 to 304) that are:
- iol_init
- iol_end
- iol_rows
- iol_cols
- iol_clrscr
- iol_flush
- iol_getch
- iol_movecur
- iol_putch
- iol_prnstr
- Compile the new additions with your iolmain.c, everything should work like before.
- Instead of replacing the whole logic, you could modify your functions with my additions, but since you have only two platforms covered in your logic, It may be easier to just replace your platform dependent logic with mine.
Contents
Objective
Your objective at this stage is to create series of core classes designed to interact with the user. These Core Classes then can be used in development of any interactive application.
Please note that the class definitions here are minimum requirement for the Core Classes and you are free to add any enhancements or features you find useful. However make sure that you discuss these enhancements with your professor to make sure they are feasible before implementation.
It is highly recommended to develop the classes in the order they are stated here. You must create your own tester programs fore each class (if possible); However, close to due date of each release, a tester program is provided to help you verify the functionality of your classes. Executables of the test programs are available on matrix to show you how it is supposed to run.
Start by creating mock-up classes (class declaration and definition with empty methods that only compiles and don't do anything). Each class MUST have its own header file to hold its declaration and "cpp" file to hold its implementation. To make sure you do not do circular includes follow these simple guidelines:
- Add recompilation safeguards to all your header files.
- Always use forward declaration if possible instead of including a class header-file.
- Use includes only in files in which the actual header file code is used.
- Avoid "just in case" includes.
DueDates
Adding Buffering logic to your iol logic
Duedate: Sunday Jul 24th, 23:59;
IOL General Header file (iolgh.h)
The general header file holds the common setting and definition between all the Core Classes.
#ifndef ___IOLGH_H__
#define ___IOLGH_H__
#ifndef _CRT_SECURE_NO_DEPRECATE
#define _CRT_SECURE_NO_DEPRECATE
#endif
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#define C_MAX_NO_FIELDS 100
#define C_BUTTON_HIT 1
#define C_MAX_LINE_CHARS (1024u)
//#define C_REFRESH -2
#define C_FULL_FRAME -1
#define C_NO_FRAME 0
#define C_BORDER_CHARS "/-\\|/-\\|"
enum CDirection {iol_centre, iol_left, iol_right, iol_up, iol_down};
extern "C"{
#include "iol.h"
};
/* will be used later
enum MessageStatus{ClearMessage,SetMessage};
#ifdef NO_HELPFUNC
# undef NO_HELPFUNC
#endif
#define NO_HELPFUNC ((void(*)(MessageStatus, CDialog&))(0))
#ifdef NO_VALDFUNC
# undef NO_VALDFUNC
#endif
#define NO_VALDFUNC ((bool(*)(const char*, CDialog&))(0))
#define C_MAX_LINE_CHARS (1024u)
#define C_INITIAL_NUM_OF_LINES (100u)
*/
#endif
File Names
Use the following rules to create filenames for your class.
- Each class MUST have its own header file and cpp file for implementation
- Use the class name for the name of the file but make sure it is all lowercase.
- For example CFrame class should have cframe.h and cframe.cpp files for its implementation.
Hierarchy
CFrame | |---CDialog | | |---CField | |-------- CLabel | | |-------- CButton | | |-------- CLineEdit | | | |-------CValEdit | |-------- CText ?? maybe | | |-------- CCheck | | |-------- CCheckList ?? maybe | | |-------- CMenuItem ?? maybe | | |-------- CMenu ?? maybe
Basic IOL Encapsulating Classes
CFrame
The code for this class is provided. You must understand and use it to develop your core classes.
CFrame class is responsible to create a frame or structure in which all user interface classes contain themselves in. It can draw a border around it self or be border-less. CFrame also, before displaying itself on the screen, will save the area it is about to cover, so it can redisplay them to hide itself.
CFrame is base of all objects in our user interface system.
#pragma once
#include "cgh.h"
class CFrame{
int _row; // relative row of left top corner to the container frame or the screen if _frame is null
int _col; // relative col of left top corner to the container frame or the screen if _frame is null
int _height;
int _width;
char _border[9]; // border characters
bool _visible; // is bordered or not
CFrame* _frame; // pointer to the container of the frame (the frame, surrounding this frame)
char* _covered; // pointer to the characters of the screen which are covered by this frame, when displayed
void capture(); // captures and saves the characters in the area covered by this frame when displayed and sets
// _covered to point to it
protected:
int absRow()const;
int absCol()const;
public:
CFrame(int Row=-1, int Col=-1, int Width=-1,int Height=-1,
bool Visible = false,
const char* Border=C_BORDER_CHARS,
CFrame* Frame = (CFrame*)0);
virtual void draw(int fn=C_FULL_FRAME);
virtual void move(CDirection dir);
virtual void hide();
virtual ~CFrame();
/* setters and getters: */
bool fullscreen()const;
void visible(bool val);
bool visible()const;
void frame(CFrame* theContainer);
CFrame* frame();
void row(int val);
int row()const;
void col(int val);
int col()const;
void height(int val);
int height()const;
void width(int val);
int width()const;
void refresh();
};
Properties
int _row, holds the relative coordinate of top row of this border with respect to its container.
int _col, same as _row, but for _col.
int _height, height of the entity.
int _width, width of the entity.
char _border[9], characters used to draw the border:
- _border[0], left top
- _border[1], top side
- _border[2], right top
- _border[3], right side
- _border[4], right bottom
- _border[5], bottom side
- _border[6], bottom left
- _border[7], left side
bool _visible; Indicates if the border surrounding the entity is to be drawn or not.
CFrame* _frame; holds the container (another CFrame) which has opened this one (owner or container of the current CFrame). _frame will be NULL if this CFrame does not have a container, in which case, it will be full screen and no matter what the values of row, col, width and height are, CFrame will be Full Screen (no border will be drawn)
char* _covered; is a pointer to a character array that hold what was under this frame before being drawn. When the CFrame wants to hides itself, it simple copies the content of this array back on the screen on its own coordinates.
Methods and Constructors
Private Methods
void capture();
- if _covered pointer is not pointing to any allocated memory, it will call the bio_capture function to capture the area that is going to be covered by this frame and keeps its address in _covered.
Protected Methods
- int absRow()const; calculates the absolute row (relative to the left top corner of the screen) and returns it.
- it returns the sum of row() of this border plus all the row()s of the _frames
- int absCol()const; calculates the absolute column(relative to the left top corner of the screen) and returns it.
- it returns the sum of col() of this border plus all the col()s of the _frames
Public Methods
CFrame(int Row=-1, int Col=-1, int Width=-1,int Height=-1,
bool Visible = false,
const char* Border=C_BORDER_CHARS,
CFrame* Frame = (CFrame*)0);
- Sets the corresponding attributes to the incoming values in the argument list and set _covered to null
virtual void draw(int fn=C_FULL_FRAME);
- First it will capture() the coordinates it is supposed to cover
- If frame is fullscreen() then it just clears the screen and exits.
Otherwise:
- If the _visible flag is true, it will draw a box at _row and _col, with size of _width and _height using the _border characters and fills it with spaces. Otherwise it will just draw a box using spaces at the same location and same size.
virtual void move(CDirection dir);
First it will hide the Frame, then adjust the row and col to more to the "dir" direction and then draws the Frame back on screen.
virtual void hide();
using bio_restore()it restores the characters behind the Frame back on screen. It will also free the memory pointed by _covered;
virtual ~CFrame();
It will make sure allocated memories are freed.
bool fullscreen()const;
void visible(bool val);
bool visible()const;
void frame(CFrame* theContainer);
CFrame* frame();
void row(int val);
int row()const;
void col(int val);
int col()const;
void height(int val);
int height()const;
void width(int val);
int width()const;
These functions set and get the attributes of the CFrame.
CField
The code for this class is provided. You must understand and use it to develop your core classes.
CField is an abstract base class that encapsulates the commonalities of all Input Outputs Console Fields which are placeable on a CDialog. All Fields could be Framed, therefore a CField is inherited from CFrame.
#include "cframe.h"
class CDialog;
class CField : public CFrame{
protected:
void* _data;
public:
CField(int Row = 0, int Col = 0,
int Width = 0, int Height =0,
void* Data = (void*) 0,
bool Bordered = false,
const char* Border=C_BORDER_CHARS);
~CField();
virtual int edit() = 0;
virtual bool editable() const = 0;
virtual void set(const void* data) = 0;
virtual void* data();
void container(CDialog* theContainer);
CDialog* container();
};
Attributes
void* _data;
Will hold the address of any type of data a CField can hold.
Constructors and Methods
CField(int Row = 0, int Col = 0,
int Width = 0, int Height =0,
void* Data = (void*) 0,
bool Bordered = false,
const char* Border=C_BORDER_CHARS);
Passes the corresponding attributes to it's parents constructor and then sets the _data attribute to the incoming Data argument.
~CField();
Empty Destructor
virtual int edit() = 0;
virtual bool editable() const = 0;
virtual void set(const void* data) = 0;
Enforce the children to implement;
- an edit() method
- an editable() method that returns true if the class is to edit data and false if the class is to only display data.
- a set() method to set the _data attribute to the data the class is to work with.
virtual void* data();
Returns _data.
void container(CDialog* theContainer);
CDialog* container();
Sets and Gets the _frame attribute of CFrame by calling CFrame::frame() method. Make sure to cast The CDialog to CFrame when setting and cast CFrame to CDialog when getting!