Difference between revisions of "GPU610/DPS915 Team 7 Project Page"

From CDOT Wiki
Jump to: navigation, search
(Assignment 2)
(Blanked the page)
 
(22 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{GPU610/DPS915 Index | 20181}}
 
= Team 7 =
 
== Team Members ==
 
# [mailto:aminassian@myseneca.ca?subject=dps915 Alek Minassian]
 
# [mailto:achowdhury17@myseneca.ca?subject=dps915 Ariquddowla Chowdhury]
 
# [mailto:ayeung24@myseneca.ca?subject=dps915 Alfred Yeung]
 
[mailto:aminassian@myseneca.ca;achowdhury17@myseneca.ca;ayeung24@myseneca.ca Email All]
 
  
== Assignment 1 ==
 
=== Creating ray-traced images by Alek Minassian ===
 
This is an open-source program available from [http://cosinekitty.com/raytrace/chapter05_cpp_code.html here]. This program can be built and run on both Windows and Linux. A copy of the source code in ZIP format is available in the section below as well as instructions for building and running. The program works by creating one or more objects and placing them on a "Scene". It then adds one or more light sources and traces them as they reflect off or refract through objects. As an example, the following chessboard is generated as follows:
 
*A chessboard is created, rotated, and added to the scene.
 
*Three spheres are created and added to the scene.
 
*Three light sources are added.
 
*Finally, the new image is saved.
 
 
[[File:Chessboard.png]]
 
 
==== Downloading the source code ====
 
A modified version of the project is available from [[Media:Raytrace.a1.zip | here]]. The following modifications were made:
 
*The raytrace/raytrace/build file used for building on Linux is modified to enable profiling as well as using version 7.2.0 of g++ on Matrix.
 
*The Visual Studio solution raytrace/raytrace.sln is upgraded to Visual Studio 2017.
 
*Some code has been added to scene.cpp in order to report the time spent in certain parts of the code. This is so that we can get a more granular timing than what is available through profiling.
 
 
==== Building and running on Windows ====
 
*Unzip the source from the previous step and open raytrace/raytrace.sln.
 
*Set the active configuration and platform:
 
**From the "Build" menu item, select "Configuration Manager..."
 
**Change the Active solution platform to be x64.
 
**Change the Active solution configuration to be Release.
 
*If you run into build issues, you may have to re-target the solution as follows:
 
**In the Solution Explorer pane, right-click on the solution and select "Retarget solution".
 
**Select the latest Windows SDK version available to you.
 
*You can now build the solution from the build menu.
 
*Run the program by selecting "Start Without Debugging" from the Debug menu. You should now see the following screen:
 
        [[File:AM ReportTime.png|500px]]
 
*The chessboard image chessboard.png, that was displayed above, is now generated and can be found in the raytrace/raytrace folder.
 
 
==== Building and running on Linux (Matrix) ====
 
*Download the source: ''curl <nowiki>https://wiki.cdot.senecacollege.ca/w/imgs/Raytrace.a1.zip</nowiki> -o rtsource.zip''
 
*Unzip the source: ''unzip rtsource.zip''
 
*''cd raytrace/raytrace''
 
*''chmod a+x build''
 
*Build the source code: ''./build''
 
*Run the application: ''./raytrace chessboard''
 
 
==== Profiling and Analysis ====
 
The following shows the results of profiling in Visual Studio:
 
 
[[File:AM_Profile.PNG]]
 
 
 
'''Profiling on Matrix'''
 
 
The results of the profiling done on Matrix can be found in this ''[[Media:AM raytrace.flt.txt | flat profile]]'' and this ''[[Media:AM raytrace.clg.txt | call graph]]''.
 
 
 
The following shows some timings reported by code that was added to the application.
 
 
[[File:AM_ReportTime.png|500px]]
 
 
Analysis of the code shows that ''main'' calls ''ChessBoardTest'' which calls ''SaveImage''. Based on the profiling results above, the application spends the majority of its time in ''SaveImage''. Analyzing the code also shows that ''SaveImage'' calls ''TraceRay'' in a nested loop as follows:
 
<code>
 
    <nowiki>
 
        for (size_t i=0; i < largePixelsWide; ++i)
 
        {
 
            ......
 
 
            for (size_t j=0; j < largePixelsHigh; ++j)
 
            {
 
                ......
 
                TraceRay();
 
                ......
 
            }
 
        }
 
    </nowiki>
 
</code>
 
 
The remainder of the functions where the majority of the time is spent are called from ''TraceRay''. The timing statements added to the code show that 3261 milliseconds are spent in this nested loop. The total time spent in the application is 3658 milliseconds. Therefore, we can conclude that the majority of the time is spent in the above nested loop which is 89%. Since one iteration of the loop does not depend on another iteration, the calls to ''TraceRay'' can be parallelized. Assuming an Nvidia GPU with 192 cores (Nvidia Quadro K1000M), Amdahl's Law predicts a speedup by a factor of 8.72:
 
 
<code>S<sub>192</sub> = 1 / ( 1 - 0.89 + 0.89 / 192 ) = 8.72</code>
 
 
 
----
 
 
===Sudoku Solver by Ariquddowla Chowdhury===
 
 
 
This is an open source project that I found on someone's github page which can be found [https://github.com/bryanesmith/Sudoku-solver here]. This program can be compiled with the GNU C++ compiler.
 
 
The program works by first defining what the sudoku board looks like. It sets each value. It checks a value and makes sure it fits based on Sudoku rules. Everytime a value is set, we backtrack to ensure that the rules are kept across the board.
 
 
The main chunk of code that seemily would run the longest would be in the verifyValue function.
 
 
<code>
 
<nowiki>
 
for (int y_verify=box_y * 3; y_verify < box_y * 3 + 3; y_verify++) {
 
// For each x in the same box
 
for (int x_verify=box_x * 3; x_verify < box_x * 3 + 3; x_verify++) {
 
// Skip self.
 
if (x_verify == x_cord && y_verify == y_cord) {
 
continue;
 
}
 
 
// If same value, failed
 
int verifyValue = board[x_verify][y_verify];
 
if (verifyValue == value) {
 
return false;
 
}
 
}
 
  }
 
</nowiki>
 
</code>
 
 
This part runs at O(xy) time complexity.
 
 
====Profiling and Call Graph====
 
 
After further analysis, the initial solution is already fast.
 
 
'''Flat profile:'''
 
Each sample counts as 0.01 seconds.
 
no time accumulated
 
 
  %  cumulative  self              self    total         
 
time  seconds  seconds    calls  Ts/call  Ts/call  name   
 
  0.00      0.00    0.00    44317    0.00    0.00  SudokuPuzzle::verifyValue(int, int)
 
  0.00      0.00    0.00        1    0.00    0.00  _GLOBAL__sub_I__ZN12SudokuPuzzleC2Ev
 
  0.00      0.00    0.00        1    0.00    0.00  _GLOBAL__sub_I_main
 
  0.00      0.00    0.00        1    0.00    0.00  SudokuPuzzle::solve(int, int)
 
 
 
 
 
'''Call graph'''
 
 
granularity: each sample hit covers 4 byte(s) no time propagated
 
 
index % time    self  children    called    name
 
                0.00    0.00  44317/44317      SudokuPuzzle::solve(int, int) [10]
 
[7]      0.0    0.00    0.00  44317        SudokuPuzzle::verifyValue(int, int) [7]
 
-----------------------------------------------
 
                0.00    0.00      1/1          __do_global_ctors_aux [18]
 
[8]      0.0    0.00    0.00      1        _GLOBAL__sub_I__ZN12SudokuPuzzleC2Ev [8]
 
-----------------------------------------------
 
                0.00    0.00      1/1          __do_global_ctors_aux [18]
 
[9]      0.0    0.00    0.00      1        _GLOBAL__sub_I_main [9]
 
-----------------------------------------------
 
                                4701            SudokuPuzzle::solve(int, int) [10]
 
                0.00    0.00      1/1          SudokuPuzzle::solve() [15]
 
[10]    0.0    0.00    0.00      1+4701    SudokuPuzzle::solve(int, int) [10]
 
                0.00    0.00  44317/44317      SudokuPuzzle::verifyValue(int, int) [7]
 
                                4701            SudokuPuzzle::solve(int, int) [10]
 
-----------------------------------------------
 
 
 
Index by function name
 
 
  [8] _GLOBAL__sub_I__ZN12SudokuPuzzleC2Ev (SudokuPuzzle.cpp) [7] SudokuPuzzle::verifyValue(int, int)
 
  [9] _GLOBAL__sub_I_main (main.cpp) [10] SudokuPuzzle::solve(int, int)
 
 
 
====Assessment====
 
 
 
This code would not benefit from parallelism as it is already fast, and each result relies on a previous result. This would make the code incredibly complex to parallelize and
 
it would not benefit as such. Perhaps if the Sudoku board was larger than 9x9 the solution could be faster.
 
 
----
 
 
=== Image Processing by Alfred Yeung ===
 
 
I found a sample of image processing code located here: http://www.dreamincode.net/forums/topic/76816-image-processing-tutorial/.
 
 
The code uses PGM files (P5 type is the standard for the code). For more information about PGM files, here is a link: http://netpbm.sourceforge.net/doc/pgm.html.
 
 
There were a few functions that I felt could be parallelized a significant amount. These functions were enlargeImage, reflectImage, and rotateImage.
 
==== Functions ====
 
===== Enlarge Image =====
 
'''
 
    int rows, cols, gray;
 
    int pixel;
 
    int enlargeRow, enlargeCol;
 
   
 
    rows = oldImage.N * value;
 
    cols = oldImage.M * value;
 
    gray = oldImage.Q;
 
   
 
    Image tempImage(rows, cols, gray);
 
   
 
    for(int i = 0; i < oldImage.N; i++)
 
    {
 
            for(int j = 0; j < oldImage.M; j++)
 
            {
 
                    pixel = oldImage.pixelVal[i][j];
 
                    enlargeRow = i * value;
 
                    enlargeCol = j * value;
 
                    for(int c = enlargeRow; c < (enlargeRow + value); c++)
 
                    {
 
                            for(int d = enlargeCol; d < (enlargeCol + value); d++)
 
                            {
 
                                    tempImage.pixelVal[c][d] = pixel;
 
                            }
 
                    }
 
            }
 
    }
 
   
 
    oldImage = tempImage;
 
'''
 
===== Reflect Image =====
 
'''
 
    int rows = oldImage.N;
 
    int cols = oldImage.M;
 
    Image tempImage(oldImage);
 
    if(flag == true) //horizontal reflection
 
    {
 
        for(int i = 0; i < rows; i++)
 
        {
 
            for(int j = 0; j < cols; j++)
 
                tempImage.pixelVal[rows - (i + 1)][j] = oldImage.pixelVal[i][j];
 
        }
 
    }
 
    else //vertical reflection
 
    {
 
        for(int i = 0; i < rows; i++)
 
        {
 
            for(int j = 0; j < cols; j++)
 
                tempImage.pixelVal[i][cols - (j + 1)] = oldImage.pixelVal[i][j];
 
        }
 
    }
 
   
 
    oldImage = tempImage;
 
'''
 
===== Rotate Image =====
 
'''
 
    int r0, c0;
 
    int r1, c1;
 
    int rows, cols;
 
    rows = oldImage.N;
 
    cols = oldImage.M;
 
    Image tempImage(rows, cols, oldImage.Q);
 
   
 
    float rads = (theta * 3.14159265)/180.0;
 
   
 
    r0 = rows / 2;
 
    c0 = cols / 2;
 
   
 
    for(int r = 0; r < rows; r++)
 
    {
 
        for(int c = 0; c < cols; c++)
 
        {
 
            r1 = (int) (r0 + ((r - r0) * cos(rads)) - ((c - c0) * sin(rads)));
 
            c1 = (int) (c0 + ((r - r0) * sin(rads)) + ((c - c0) * cos(rads)));
 
           
 
            if(inBounds(r1,c1))
 
            {
 
                tempImage.pixelVal[r1][c1] = oldImage.pixelVal[r][c];
 
            }
 
        }
 
    }
 
   
 
    for(int i = 0; i < rows; i++)
 
    {
 
        for(int j = 0; j < cols; j++)
 
        {
 
            if(tempImage.pixelVal[i][j] == 0)
 
                tempImage.pixelVal[i][j] = tempImage.pixelVal[i][j+1];
 
        }
 
    }
 
    oldImage = tempImage;
 
'''
 
==== Profiling ====
 
 
I started with a PGM file that contained 512 width and height (in ASCII decimal), and 255 gray value (in ASCII decimal). This totaled to 257 KB as the file size.
 
 
I enlarged the image by 5 times its original size. I then reflected the image horizontally. Finally, I rotated the image 90 degrees.
 
 
real    0m35.904s
 
user    0m0.520s
 
sys    0m22.781s
 
 
===== Flat Profile =====
 
 
Each sample counts as 0.01 seconds.
 
  %  cumulative  self              self    total         
 
time  seconds  seconds    calls  ms/call  ms/call  name   
 
29.70      0.30    0.30                            Image::rotateImage(int, Image&)
 
25.74      0.56    0.26        3    86.67    86.67  Image::operator=(Image const&)
 
15.84      0.72    0.16        2    80.00    80.00  Image::Image(int, int, int)
 
14.85      0.87    0.15                            writeImage(char*, Image&)
 
  9.90      0.97    0.10        1  100.00  100.00  Image::Image(Image const&)
 
  1.98      0.99    0.02                            Image::enlargeImage(int, Image&)
 
  1.98      1.01    0.02                            Image::reflectImage(bool, Image&)
 
  0.00      1.01    0.00        3    0.00    0.00  Image::~Image()
 
  0.00      1.01    0.00        1    0.00    0.00  _GLOBAL__sub_I__ZN5ImageC2Ev
 
 
===== Call Graph =====
 
 
[[File:ImgPrcCallGraph.png]]
 
 
==== Assessment ====
 
 
Judging from the flat profile and call graph, rotateImage takes the longest to complete. EnlargeImage and reflectImage both take less time to complete than rotateImage. They also are completed at very similar times. Therefore, the best function to look into parallizing would be the rotateImage function.
 
 
----
 
 
=== Final Decision ===
 
 
The group has decided to proceed with the "Creating ray-traced images" application as it has good potential for parallelization. Although the total time taken to generate one image is somewhat fast already (3.6 seconds), however, if generating multiple images (10, 100, or even more), then parallelization would offer great savings in the total time.
 
 
'''Update:'''
 
After reaching the above decision, the team started looking into the effort required to parallelize the program. The '''TraceRay()''' method called in the nested loop is a member of the '''Scene''' class which has several lists of objects that are created on the heap. It is a major effort to copy these to the device as there are many dependent classes. In addition, the program uses the standard template library which would have to be converted to be using the '''Thrust''' library. Given the large number of classes involved, the effort required to do these is big and error-prone. As a result, the team has now decided to work on the '''Image Processing''' program.
 
 
 
== Assignment 2 ==
 
=== Rotate Image ===
 
The following code shows part of the serial version of the '''rotateImage''' method. The parallelized version of this code is also shown below.
 
 
 
'''Serial Version:'''
 
 
[[File:DPS915 Team7 RotateImage.png]]
 
 
 
 
'''Parallelized Version:'''
 
 
The following shows the kernel definition as well as launching of the kernel. Another modification that was made to the serial version was to convert ''pixelVal'' (a member of the '''Image''' class) from an int** to an int* and allocate it as a linearized matrix. This was done in order to make it easier to do the allocations and the copying to the device.
 
 
[[File:DPS915 Team7 RotatePixelsKernel.png]]
 
 
[[File:DPS915 Team7 RotateImage Updated.png]]
 
 
 
 
 
The following table shows the timings for various image sizes for the serialized and parallelized versions of the program.
 
 
 
[[File:DPS915 Team7 Timings.png]]
 
 
== Assignment 3 ==
 

Latest revision as of 19:00, 23 April 2018