Difference between revisions of "OPS435 Python Lab 4"

From CDOT Wiki
Jump to: navigation, search
(Create a Python Script Demonstrating Comparing Lists)
(PART 3 - Dictionaries)
Line 255: Line 255:
 
== PART 3 - Dictionaries ==
 
== PART 3 - Dictionaries ==
  
::By now, you have probably been exposed to database terminology. For example, a '''database''' is a collection of ''related records''. In turn, '''records''' are a collection of ''related fields''. In order to access a record in a database, you would need to access it by '''key field(s)'''. In order words, those key field(s) are a '''key that unlocks the access to a record''' within a database.
+
::In Python, a '''dictionary''' is a set of key-value pairs. Dictionaries are '''unordered''', like sets, however any value can be retrieved from a dictionary if you know the key. This section will go over how to create, access, and change dictionaries, giving you a new powerful tool to store and manipulate data.
 
 
::In Python, a '''dictionary''' is a set of key-value pairs. Dictionaries are '''unordered''', like sets, however any value can be retrieved from a dictionary if you know the key. This section will go over how to create, access, and change dictionaries, providing a new powerful tool to store and manipulate data.
 
  
 
::'''Perform the Following Steps:'''
 
::'''Perform the Following Steps:'''
::#Launch the ipython3 shell:<source>
+
::#Let's begin by creating a new dictionary in a temporary Python file:<source lang="python">
ipython3
 
</source>
 
::#Let's begin by creating a new dictionary (for practice):<source lang="python">
 
 
dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Postal Code': 'M3J3M6'}
 
dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Postal Code': 'M3J3M6'}
</source>You should note that the syntax to define a dictionary is similar to defining sets (i.e. using '''{}''').<br>Unlike sets, dictionaries use '''<code>key:value</code>''' pairs within the dictionary, each ''key:value'' pair in turn, are separated by commas.<br><br>You can get help associated with your dictionary by using functions such as '''dir()''' and '''help()'''.<br><br>
+
</source>You should note that the syntax to define a dictionary is similar to defining sets (i.e. using '''{}'''), but unlike sets dictionaries use '''<code>key:value</code>''' pairs within the dictionary, each ''key:value'' pair is separated by commas.
::#Issue the following and note all the available functions available and how to obtain assistance with dictionary objects:<source lang="python">
+
::#All the values in a dictionary can be retrieved by using the '''dictionary.values()''' function. This particular function provides a '''list''' containing all values:<source lang="python">
dir(dict_york)
+
print(dict_york.values())
help(dict_york)
+
</source>All keys to access the ''key:pair'' values within a dictionary can be retrieved using the '''dictionary.keys()''' function:<source lang="python">
</source>All values can be viewed by using the '''dictionary.values()''' function. This particular function provides a '''list''' containing all values.<br><br>
 
::#To demonstrate, issue the following:<source lang="python">
 
help(dict_york.values)
 
dict_york.values()
 
</source>All keys to access the ''key:pair'' values within a dictionary can be viewed by using the '''dictionary.keys()''' function. This function provides a '''list''' containing all keys<br><br>
 
::#To demonstrate this, issue the following:<source lang="python">
 
help(dict_york.keys)
 
 
dict_york.keys()
 
dict_york.keys()
</source>Armed with this information, We can retrieve <u>individual</u> values from a dictionary by provide the key associated with the key:pair value<br><br>
+
</source>We can retrieve <u>individual</u> values from a dictionary by providing the key associated with the value:<source lang="python">
::#For example, issue the following:<source lang="python">
+
print(dict_york['Address'])
dict_york['Address']
+
print(dict_york['Postal Code'])
dict_york['Postal Code']
 
 
</source>
 
</source>
::#Dictionary keys can be any '''immutable''' values (i.e. not permitted for value to be changed). Types of values include: '''strings''', '''numbers''', and '''tuples'''. Trying adding a couple new keys and values to the dictionary by issuing:<source lang="python">
+
::#Dictionary keys can be any '''immutable''' values (i.e. not permitted for value to be changed). Types of values include: '''strings''', '''numbers''', and '''tuples'''.
 +
::#Try adding a new key and value to the dictionary:<source lang="python">
 
dict_york['Country'] = 'Canada'
 
dict_york['Country'] = 'Canada'
dict_york
+
print(dict_york)
dict_york.values()
+
print(dict_york.values())
dict_york.keys()
+
print(dict_york.keys())
 
</source>
 
</source>
::#Let's add another key:value pair to our dictionary to change the province key:pair value to BC:<source lang="python">
+
::#Let's change the province value to BC:<source lang="python">
 
dict_york['Province'] = 'BC'
 
dict_york['Province'] = 'BC'
dict_york
+
print(dict_york)
dict_york.values()
+
print(dict_york.values())
dict_york.keys()
+
print(dict_york.keys())
</source>'''WARNING: Dictionary keys must be unique'''. Attempting to add a key that already exists in the dictionary will <u>overwrite</u> the existing value for that key!<br><br>
+
</source>'''WARNING: Dictionary keys must be unique'''. Attempting to add a key that already exists in the dictionary will <u>overwrite</u> the existing value for that key! For example:<source lang="python">
::#To demonstrate, issue the following:<source lang="python">
 
 
dict_york['Province'] = 'ON'
 
dict_york['Province'] = 'ON'
dict_york
+
print(dict_york)
dict_york.values()
+
print(dict_york.values())
dict_york.keys()
+
print(dict_york.keys())
</source>You should notice that key value for 'Province' has been changed back to 'ON'.<br><br>These lists that contain the values and keys of the dictionary are not <u>real</u> python lists - they are "views of the dictionary" and therefore are <u>immutable</u>. You could change these views into usable lists by using the '''list()''' function (where the index can be used to access individual values).<br><br>
+
</source>You should notice that value for the 'Province' key has been changed back to 'ON'.<br><br>The lists that contain the values and keys of the dictionary are not <u>real</u> python lists - they are "views of the dictionary" and therefore are <u>immutable</u>. You could change these views into usable lists by using the '''list()''' function:<source lang="python">
::#For example, issue the following:<source lang="python">
 
 
list_of_keys = list(dict_york.keys())
 
list_of_keys = list(dict_york.keys())
list_of_keys[0]
+
print(list_of_keys[0])
 
</source>
 
</source>
::#In addition, lists can be changed into sets if we would like to perform comparisons with another set. To demonstrate, issue the following:<source lang="python">
+
::#Lists can be used with '''for loops''':<source lang="python">
set_of_keys = set(dict_york.keys())
 
set_of_values = set(dict_york.values())
 
set_of_keys | set_of_values
 
</source>
 
::#Lists can be used with '''for loops'''. To Demonstrate, issue the following:<source lang="python">
 
 
list_of_keys = list(dict_york.keys())
 
list_of_keys = list(dict_york.keys())
 
for key in list_of_keys:
 
for key in list_of_keys:
Line 315: Line 296:
 
for value in dict_york.values()
 
for value in dict_york.values()
 
     print(value)
 
     print(value)
</source>Additional Information regarding Dictionaries:<ul><li>The values and keys can be looped over using the index as well
 
::#The '''range()''' function provides a list of numbers in a range.</li><li>The '''len()''' function provides a the number of items in a list.</li><li>Used together '''len()''' and '''range()''' can be used to create a list of usable indexes for a specific list</li></ul><br>Let's create a dictionary by using lists in order to store our dictionary data. First, we need to  pair the keys and values of two separate lists.<br><br>
 
::#Issue the following:<source lang="python">
 
list_of_keys = list(dict_york.keys())
 
list_of_values = list(dict_york.values())
 
list_of_indexes = range(0, len(dict_york.keys()))
 
list_of_indexes
 
list_of_keys[0]
 
list_of_values[0]
 
</source>Now, let's use these '''newly-created lists''', '''len()''' &amp; '''range()''' functions with a '''for loop''' to construct our dictionary:<br><br>
 
::#Issue the following:<source lang="python">
 
list_of_keys = list(dict_york.keys())
 
list_of_values = list(dict_york.values())
 
for index in range(0, len(list_of_keys)):
 
    print(list_of_keys[index] + '--->' + list_of_values[index])
 
</source>
 
::#Looping using indexes is not the best way to loop through a dictionary. A new dictionary could be created using this method, but this is '''not good''':<source lang="python">
 
list_of_keys = list(dict_york.keys())
 
list_of_values = list(dict_york.values())
 
new_dictionary = {}
 
for index in range(0, len(list_of_keys)):
 
    new_dictionary[list_of_keys[index]] = list_of_values[index]
 
</source>
 
::#The above method uses a lot of memory and loops. The best method to create a dictionary from two lists is to use the zip() function:<source lang="python">
 
list_of_keys = list(dict_york.keys())
 
list_of_values = list(dict_york.values())
 
new_dictionary = dict(zip(list_of_keys, list_of_values))
 
</source>
 
::#Looping through the keys in a dictionary also provides a easy way to get the value for each key at the same time:<source lang="python">
 
for key in dict_york.keys():
 
    print(key + '--->' + dict_york[key])
 
</source>
 
::#An alternative (possibly more efficient) method would be to cause both the key and its value to be extracted into a single (using a for loop, and using a special object):<source lang="python">
 
for key, value in dict_york.items():
 
    print(key + ' | ' + value)
 
 
</source>
 
</source>
 +
 
=== Create a Python Script for Managing Dictionaries ===
 
=== Create a Python Script for Managing Dictionaries ===
 
:'''Perform the Following Instructions'''
 
:'''Perform the Following Instructions'''
Line 367: Line 314:
 
     # Place code here - refer to function specifics in section below
 
     # Place code here - refer to function specifics in section below
  
def split_dictionary(dictionary):
 
    # Place code here - refer to function specifics in section below
 
     
 
 
def shared_values(dict1, dict2):
 
def shared_values(dict1, dict2):
 
     # Place code here - refer to function specifics in section below
 
     # Place code here - refer to function specifics in section below
Line 377: Line 321:
 
     york = create_dictionary(list_keys, list_values)
 
     york = create_dictionary(list_keys, list_values)
 
     print('York: ', york)
 
     print('York: ', york)
    keys, values = split_dictionary(dict_newnham)
 
    print('Newnham Keys: ', keys)
 
    print('Newnham Values: ', values)
 
    keys, values = split_dictionary(york)
 
    print('York Keys: ', keys)
 
    print('York Values: ', values)
 
 
     common = shared_values(dict_york, dict_newnham)
 
     common = shared_values(dict_york, dict_newnham)
 
     print('Shared Values', common)
 
     print('Shared Values', common)
Line 389: Line 327:
 
:::*The script should contain '''three''' functions:
 
:::*The script should contain '''three''' functions:
 
:::::'''create_dictionary()'''<ol><li>'''accepts''' two lists as arguments keys and values, '''combines''' these lists together to '''create''' a dictionary</li><li>'''returns a dictionary''' that has the keys and associated values from the lists</li></ol>
 
:::::'''create_dictionary()'''<ol><li>'''accepts''' two lists as arguments keys and values, '''combines''' these lists together to '''create''' a dictionary</li><li>'''returns a dictionary''' that has the keys and associated values from the lists</li></ol>
:::::'''split_dictionary()'''<ol><li>'''accepts''' a single dictionary as a argument and '''splits''' the dictionary into two lists, keys and values</li><li>'''returns two lists''': The return function can return multiple lists (separated by a comma). In our case, use: '''return keys, values'''</li></ol>
 
 
:::::'''shared_values()''' <ol><li>'''accepts''' two dictionaries as arguments and '''finds''' all values that are shared between the two dictionaries<br>('''Tip:''' generate sets containing only values for each dictionary, then use a function mentioned in a previous section to store the values that are common to <u>both</u> lists)</li><li>'''returns a set''' containing '''ONLY values''' found in '''BOTH dictionaries'''</li></ol>
 
:::::'''shared_values()''' <ol><li>'''accepts''' two dictionaries as arguments and '''finds''' all values that are shared between the two dictionaries<br>('''Tip:''' generate sets containing only values for each dictionary, then use a function mentioned in a previous section to store the values that are common to <u>both</u> lists)</li><li>'''returns a set''' containing '''ONLY values''' found in '''BOTH dictionaries'''</li></ol>
 
:::*make sure the functions have the correct number of arguments required
 
:::*make sure the functions have the correct number of arguments required
Line 397: Line 334:
 
run lab4c.py
 
run lab4c.py
 
York:  {'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Address': '70 The Pond Rd', 'Province': 'ON', 'City': 'Toronto'}
 
York:  {'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Address': '70 The Pond Rd', 'Province': 'ON', 'City': 'Toronto'}
Newnham Keys:  ['Country', 'Postal Code', 'Address', 'Province', 'City']
 
Newnham Values:  ['Canada', 'M2J2X5', '1750 Finch Ave E', 'ON', 'Toronto']
 
York Keys:  ['Country', 'Postal Code', 'Address', 'Province', 'City']
 
York Values:  ['Canada', 'M3J3M6', '70 The Pond Rd', 'ON', 'Toronto']
 
 
Shared Values {'Canada', 'ON', 'Toronto'}
 
Shared Values {'Canada', 'ON', 'Toronto'}
 
</source>
 
</source>
::::'''Sample Run 2(with import):'''<source>
+
::::'''Sample Run 2 (with import):'''<source>
 
import lab4c
 
import lab4c
 
dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Province': 'ON'}
 
dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Province': 'ON'}
Line 412: Line 345:
 
york = create_dictionary(list_keys, list_values)
 
york = create_dictionary(list_keys, list_values)
  
york
+
print(york)
{'Address': '70 The Pond Rd',
+
# Will print: {'Address': '70 The Pond Rd',
'City': 'Toronto',
+
              'City': 'Toronto',
'Country': 'Canada',
+
              'Country': 'Canada',
'Postal Code': 'M3J3M6',
+
              'Postal Code': 'M3J3M6',
'Province': 'ON'}
+
              'Province': 'ON'}
 
 
keys, values = split_dictionary(dict_newnham)
 
 
 
keys
 
['Country', 'Postal Code', 'Address', 'Province', 'City']
 
 
 
values
 
['Canada', 'M2J2X5', '1750 Finch Ave E', 'ON', 'Toronto']
 
 
 
keys, values = split_dictionary(york)
 
 
 
keys
 
['Country', 'Postal Code', 'Address', 'Province', 'City']
 
 
 
values
 
['Canada', 'M3J3M6', '70 The Pond Rd', 'ON', 'Toronto']
 
  
 
common = shared_values(dict_york, dict_newnham)
 
common = shared_values(dict_york, dict_newnham)
  
common
+
print(common)
{'Canada', 'ON', 'Toronto'}
+
# Will print: {'Canada', 'ON', 'Toronto'}
 
</source>
 
</source>
:::3. Exit the ipython3 shell, download the checking script and check your work. Enter the following commands from the bash shell.<source lang="bash">
+
:::3. Download the checking script and check your work. Enter the following commands from the bash shell.<source lang="bash">
 
cd ~/ops435/lab4/
 
cd ~/ops435/lab4/
 
pwd #confirm that you are in the right directory
 
pwd #confirm that you are in the right directory
Line 446: Line 363:
 
python3 ./CheckLab4.py -f -v lab4c
 
python3 ./CheckLab4.py -f -v lab4c
 
</source>
 
</source>
:::4. Before proceeding, make certain that you identify any and all errors in lab4c.py. When the checking script tells you everything is OK before proceeding to the next step.
+
:::4. Before proceeding, make certain that you identify all errors in lab4c.py. When the checking script tells you everything is OK proceed to the next step.
<br><br>
 
 
 
<!--== PART 4 - List Comprehension ==
 
 
 
'''SKIP THIS PART'''
 
 
 
:We have already have had an introduction to lists. We will now explore advanced functions that use and generate lists. This is a very common practice in Python: understanding how to generate, manipulate, and apply functions to items inside a list can be incredibly useful. List comprehension is a way to build new lists from existing list and to do it faster than simply looping over lists.
 
 
 
:'''Perform the Following Steps'''
 
 
 
:#Let's start by creating a list and then applying some functions to each item in that list. Issue the following to create a list and then display the square for each item within that list:<source>
 
l1 = [1, 2, 3, 4, 5]
 
for item in l1:
 
    print(item ** 2)
 
</source>In order to store these results (i.e. squares) for later use, you would have to create a new list and append the squares to it. This will generate a new list that contains squared values in the same positions of the first list. In this way, you are using an existing list in order to create a new (larger) list.<br><br>
 
:#To demonstrate, issue the following:<source>
 
l1 = [1, 2, 3, 4, 5]
 
l2 = []
 
for item in l1:
 
    l2.append(item ** 2)
 
l1
 
l2
 
</source>Since this may be a repetitive task, it makes more sense to create a function that will append the squares to a new item within an existing list.<br><br>
 
:#Issue the following to see how that can be performed:<source>
 
def square(number):
 
    return number ** 2
 
 
 
l1 = [1, 2, 3, 4, 5]
 
l2 = []
 
for item in l1:
 
    l2.append(square(item))
 
 
 
l1
 
l2
 
</source>The '''map()''' function can be used to apply a function on each item in a list. This is exactly what happened in the previous example; however, using the ''map()'' function provides for better syntax, and removes the loop (including the variable that was created inside the loop). Therefore, using the ''map()'' function will make your Python script more efficient while performing the same task.<br><br>
 
:#To demonstrate, issue the following:<source>
 
def square(number):
 
    return number ** 2
 
 
 
l1 = [1,2,3,4,5]
 
l2 = list(map(square, l1))
 
 
 
l1
 
l2
 
</source>The above ''map()'' function requires another function as well as a list. This means that before using (calling) the map() function, that other function would have to have been defined earlier in the script. This entire process can be avoided through the use of '''anonymous functions'''. This is the ability to create a simple function without defining it, and pass it on to other function calls. You will use the the '''lambda anonymous function''', which will return a function that you can use in that function immediately (i.e. without having to declare it in your script). The function takes 1 argument (called: x), and it will square that value.<br><br>
 
:#To demonstrate, issue the following:<source>
 
square = lambda x: x ** 2
 
l1 = [1,2,3,4,5]
 
l2 = list(map(square, l1))
 
 
 
l1
 
l2
 
</source>
 
:#The above code is actually not particularly good, the whole purpose of using lambda here is we were avoiding the function definition and just quickly returning a function. However this does break down exactly what lambda does, it returns a function for use. Fix this by removing the square function and just use the return function from lambda. Now remember what map requires? map's first argument is a function, and map's second argument is a list. Here lambda will return a function and provide it as the first argument.<source>
 
l1 = [1,2,3,4,5]
 
l2 = list(map(lambda x: x ** 2, l1))
 
 
 
l1
 
l2
 
</source>
 
:#Using the list comprehensions above our code will be faster and more efficient than using multiple variables and loops.
 
-->
 
  
 
= INVESTIGATION 2: STRINGS =
 
= INVESTIGATION 2: STRINGS =

Revision as of 21:32, 11 February 2018

OBJECTIVES

The first investigation in this lab will focus on Data Structures. Each data structure has its own advantages and limitations. This lab will emphasize the most important differences between them.
The second investigation will focus on strings. You have been using and storing strings since our first class, however in this lab we will dive into the more complex nature of string manipulation. Finally, this lab will cover how to use a variety of regular expression functions for searching and input validation.

PYTHON REFERENCE

As you develop your Python scripting skills, you may start to be "overwhelmed" with the volume of information that you have absorbed over these labs. One way to help, is to learn to use online references effectively in order to obtain information regarding Python scripting techniques and tools.
Below is a table with links to useful online Python reference sites (by category). You may find these references useful when performing assignments, etc.
Data Structures Lists & List Comprehension Strings Regular Expressions Miscellaneous

INVESTIGATION 1: DATA STRUCTURES

In this investigation, you will learn several data structures commonly used in Python scripting. These tools include lists, tuples, sets, and dictionaries.

PART 1 - Tuples

Many often confuse a tuple with a list (which you learned about in a previous lab). A tuple is a type of list whose values cannot be changed. In fact, nothing in a tuple can be changed after it's created (like adding, removing list elements).
There are many advantages to using tuples when creating Python scripts:
  • Data protection (eg. values are are NOT allowed to change so you won't modify them accidentally)
  • Tuples can be used as keys in data dictionaries (which are NOT allowed to change)
  • Tuples allow for faster access than lists
The term to indicate that a data structure cannot be changed is called immutable (as opposed to "mutable" which means the data structure can be changed).
Perform the Following Steps:
  1. Let's create two tuples in a temporary Python file, so we can learn how to use them and learn how they differ from lists.

    Note: tuples are defined by using parenthesis ( ) as opposed to lists which are defined by using square brackets [ ]
    t1 = ('Prime', 'Ix', 'Secundus', 'Caladan')
    t2 = (1, 2, 3, 4, 5, 6)
  2. Values from a tuple can be retrieved in the same way as a list. For example:
    print(t1[0])
    print(t2[2:4])
  3. You can also check to see whether a value exists inside a tuple or not. To demonstrate try:
    print('Ix' in t1)
    print('Geidi' in t1)
    Let's now see how a tuple differs from a list. We will now create a list and note the difference between them:
    list2 = [ 'uli101', 'ops235', 'ops335', 'ops435', 'ops535', 'ops635' ]
  4. See if you can change the value of your list:
    list2[0]= 'ica100'
    print(list2[0])
    print(list2)
    You should have been successful in changing the value of your list.

  5. Now, try changing the value of your previously-created tuple:
    t2[1] = 10
    Did it work? Once created the tuple values will not be able to change.

    If you would like a tuple with different values than the tuple you currently have, then you must create a new one.

  6. The following creates a new tuple (t3) with a contents from a slice of the t2 tuple. Slicing works the same way for tuples as for lists:
    t3 = t2[2:3]
  7. Also, as with lists, you can use for loops to iterate the values of tuples:
    for item in t1:
        print('item: ' + item)

PART 2 - Sets

So far, you have been exposed to two structures that are used to contain data: lists and tuples. You can modify the values within a list as well as modify the structure of a list (i.e. add and remove elements), whereby you cannot with a tuple.
In this section, you will learn about sets. A set has similar characteristics as a list, but there are two major differing characteristics:
  • Sets are un-ordered
  • Sets cannot contain duplicate values
Since new duplicate entries will be automatically removed when using sets, they are very useful for performing tasks such as comparisons: finding similarities or differences in multiple sets.
  1. Create some sets to work with in a temporary Python file:
    s1 = {'Prime', 'Ix', 'Secundus', 'Caladan'}
    s2 = {1, 2, 3, 4, 5}
    s3 = {4, 5, 6, 7, 8}
    Note: Sets are defined by using braces { } as opposed to tuples which use parenthesis ( ), or lists which use square brackets [ ]

  2. Try to access a set through the index:
    print(s1[0])
    This should have caused an error. You cannot access data inside a set this way because the elements inside are unordered. Instead, you should use the in method to check to see whether a value is contained in the set:
    print('Ix' in s1)
    print('Geidi' in s1)

    Sets can be combined, but it is important to note that any duplicate values (shared among sets) will be deleted.

  3. Print the contents of the sets and note the values that are common:
    print(s2)
    print(s3)
  4. This is how you get a set containing only UNIQUE values (no duplicates) from both sets:
    print(s2 | s3)         # returns a set containing all values from both sets
    print(s2.union(s3))    # same as s2 | s3
    Notice that both methods above have the same result, which one you choose depends purely on your style.

    Instead of combining sets, we can display values that are common to both sets. This is known in mathematical terms as an intersection between the lists:
    print(s2 & s3)             # returns a set containing all values that s2 and s3 share
    print(s2.intersection(s3)) # same as s2 & s3
  5. Sets can also have their values compared against other sets. First find out what items are in s2 but not in s3. This is also called a difference:
    print(s2)
    print(s3)
    print(s2 - s3)             # returns a set containing all values in s2 that are not found in s3
    print(s2.difference(s3))   # same as s2 - s3
  6. In order to see every difference between both sets, you need to find the symmetric difference. This will return a set that shows all numbers that both sets do not share together:
    print(s2 ^ s3)                     # returns a set containing all values that both sets DO NOT share
    print(s2.symmetric_difference(s3)) # same as s2 ^ s3
    Note: the set() function can convert lists into sets, and the list() function can convert sets into lists. The operations in this section can only be applied to sets, so if you need to perform a union, intersection, or difference between lists, you need to convert them to sets first. For example:
    l2 = [1, 2, 3, 4, 5]
    l3 = [4, 5, 6, 7, 8]
    temporary_set = set(l2).intersection(set(l3))
    new_list = list(temporary_set)  # '''set()''' can make lists into sets. '''list()''' can make sets into lists.
    print(new_list)

Create a Python Script Demonstrating Comparing Sets

Perform the Following Instructions
  1. Create the ~/ops435/lab4/lab4a.py script. The purpose of this script will be to demonstrate the different way of comparing sets. There will be three functions, each returning a different set comparison.
  2. Use the following template to get started:
    #!/usr/bin/env python3
    
    def join_sets(s1, s2):
        # join_sets will return a set that contains every value from both s1 and s2
    
    def match_sets(s1, s2):
        # match_sets will return a set that contains all values found in both s1 and s2
    
    def diff_sets(s1, s2):
        # diff_sets will return a set that contains all different values which are not shared between the sets
    
    if __name__ == '__main__':
        set1 = set(range(1,10))
        set2 = set(range(5,15))
        print('set1: ', set1)
        print('set2: ', set2)
        print('join: ', join_sets(set1, set2))
        print('match: ', match_sets(set1, set2))
        print('diff: ', diff_sets(set1, set2))
  • The join_sets() function should return a set that contains all values from both sets
  • The match_sets() function should return a set that contains all values found in both sets
  • The diff_sets() function should return a set that contains all values which are not shared between both sets
  • All three functions should accept two arguments both are sets
  • The script should show the exact output as the samples
  • The script should contain no errors
Sample Run 1:
./lab4a.py
set1:  {1, 2, 3, 4, 5, 6, 7, 8, 9}
set2:  {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
join:  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
match:  {8, 9, 5, 6, 7}
diff:  {1, 2, 3, 4, 10, 11, 12, 13, 14}
Sample Run 2 (with import):
import lab4a
set1 = {1,2,3,4,5}
set2 = {2,1,0,-1,-2}
print(lab4a.join_sets(set1,set2))
# Will output {-2, -1, 0, 1, 2, 3, 4, 5}
print(lab4a.match_sets(set1,set2))
# Will output {1, 2}
print(lab4a.diff_sets(set1,set2))
# Will output {-2, -1, 0, 3, 4, 5}
  1. Download the checking script and check your work. Enter the following commands from the bash shell:
    cd ~/ops435/lab4/
    pwd #confirm that you are in the right directory
    ls CheckLab4.py || wget https://raw.githubusercontent.com/Seneca-CDOT/ops435/master/LabCheckScripts/CheckLab4.py
    python3 ./CheckLab4.py -f -v lab4a
  2. Before proceeding, make certain that you identify all errors in lab4a.py. When the checking script tells you everything is OK - proceed to the next step.

Create a Python Script Demonstrating Comparing Lists

Perform the Following Instructions
  1. Create the ~/ops435/lab4/lab4b.py script. The purpose of this script will be to improve the previous script to perform the same joins, matches, and diffs, but this time on lists.
  2. Use the following as a template:
    #!/usr/bin/env python3
    
    def join_lists(l1, l2):
        # join_lists will return a list that contains every value from both l1 and l2
    
    def match_lists(l1, l2):
        # match_lists will return a list that contains all values found in both l1 and l2
    
    def diff_lists(l1, l2):
        # diff_lists will return a list that contains all different values, which are not shared between the lists
    
    if __name__ == '__main__':
        list1 = list(range(1,10))
        list2 = list(range(5,15))
        print('list1: ', list1)
        print('list2: ', list2)
        print('join: ', join_lists(list1, list2))
        print('match: ', match_lists(list1, list2))
        print('diff: ', diff_lists(list1, list2))
  • The match_lists() function should return a list that contains all values found in both lists
  • The diff_lists() function should return a list that contains all values which are not shared between both lists
  • The join_lists() function should return a list that contains all values from both lists
  • All three functions should accept two arguments both are lists
  • The script should show the exact output as the samples
  • The script should contain no errors
Sample Run 1:
run lab4b.py
list1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]
list2:  [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
join:  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
match:  [8, 9, 5, 6, 7]
diff:  [1, 2, 3, 4, 10, 11, 12, 13, 14]
Sample Run 2 (with import):
import lab4b
list1 = [1,2,3,4,5]
list2 = [2,1,0,-1,-2]
print(join_lists(list1,list2)))
# Will output [0, 1, 2, 3, 4, 5, -2, -1]
print(match_lists(list1,list2))                                                                                                                 
# Will output [1, 2]
print(diff_lists(list1,list2))                                                                                                                  
# Will output [0, 3, 4, 5, -2, -1]
3. Download the checking script and check your work. Enter the following commands from the bash shell.
cd ~/ops435/lab4/
pwd #confirm that you are in the right directory
ls CheckLab4.py || wget matrix.senecac.on.ca/~acoatley-willis/CheckLab4.py
python3 ./CheckLab4.py -f -v lab4b
4. Before proceeding, make certain that you identify all errors in lab4b.py. When the checking script tells you everything is OK - proceed to the next step.

PART 3 - Dictionaries

In Python, a dictionary is a set of key-value pairs. Dictionaries are unordered, like sets, however any value can be retrieved from a dictionary if you know the key. This section will go over how to create, access, and change dictionaries, giving you a new powerful tool to store and manipulate data.
Perform the Following Steps:
  1. Let's begin by creating a new dictionary in a temporary Python file:
    dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Postal Code': 'M3J3M6'}
    You should note that the syntax to define a dictionary is similar to defining sets (i.e. using {}), but unlike sets dictionaries use key:value pairs within the dictionary, each key:value pair is separated by commas.
  2. All the values in a dictionary can be retrieved by using the dictionary.values() function. This particular function provides a list containing all values:
    print(dict_york.values())
    All keys to access the key:pair values within a dictionary can be retrieved using the dictionary.keys() function:
    dict_york.keys()
    We can retrieve individual values from a dictionary by providing the key associated with the value:
    print(dict_york['Address'])
    print(dict_york['Postal Code'])
  3. Dictionary keys can be any immutable values (i.e. not permitted for value to be changed). Types of values include: strings, numbers, and tuples.
  4. Try adding a new key and value to the dictionary:
    dict_york['Country'] = 'Canada'
    print(dict_york)
    print(dict_york.values())
    print(dict_york.keys())
  5. Let's change the province value to BC:
    dict_york['Province'] = 'BC'
    print(dict_york)
    print(dict_york.values())
    print(dict_york.keys())
    WARNING: Dictionary keys must be unique. Attempting to add a key that already exists in the dictionary will overwrite the existing value for that key! For example:
    dict_york['Province'] = 'ON'
    print(dict_york)
    print(dict_york.values())
    print(dict_york.keys())
    You should notice that value for the 'Province' key has been changed back to 'ON'.

    The lists that contain the values and keys of the dictionary are not real python lists - they are "views of the dictionary" and therefore are immutable. You could change these views into usable lists by using the list() function:
    list_of_keys = list(dict_york.keys())
    print(list_of_keys[0])
  6. Lists can be used with for loops:
    list_of_keys = list(dict_york.keys())
    for key in list_of_keys:
        print(key)
    for value in dict_york.values()
        print(value)

Create a Python Script for Managing Dictionaries

Perform the Following Instructions
  1. Create the ~/ops435/lab4/lab4c.py script. The purpose of this script will be to create dictionaries, extract data from dictionaries, and to make comparisons between dictionaries.
  2. Use the following as a template:
    #!/usr/bin/env python3
    
    # Dictionaries
    dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Province': 'ON'}
    dict_newnham = {'Address': '1750 Finch Ave E', 'City': 'Toronto', 'Country': 'Canada', 'Postal Code': 'M2J2X5', 'Province': 'ON'}
    # Lists
    list_keys = ['Address', 'City', 'Country', 'Postal Code', 'Province']
    list_values = ['70 The Pond Rd', 'Toronto', 'Canada', 'M3J3M6', 'ON']
    
    def create_dictionary(keys, values):
        # Place code here - refer to function specifics in section below
    
    def shared_values(dict1, dict2):
        # Place code here - refer to function specifics in section below
    
    
    if __name__ == '__main__':
        york = create_dictionary(list_keys, list_values)
        print('York: ', york)
        common = shared_values(dict_york, dict_newnham)
        print('Shared Values', common)
  • The script should contain three functions:
create_dictionary()
  1. accepts two lists as arguments keys and values, combines these lists together to create a dictionary
  2. returns a dictionary that has the keys and associated values from the lists
shared_values()
  1. accepts two dictionaries as arguments and finds all values that are shared between the two dictionaries
    (Tip: generate sets containing only values for each dictionary, then use a function mentioned in a previous section to store the values that are common to both lists)
  2. returns a set containing ONLY values found in BOTH dictionaries
  • make sure the functions have the correct number of arguments required
  • The script should show the exact output as the samples
  • The script should contain no errors
Sample Run 1:
run lab4c.py
York:  {'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Address': '70 The Pond Rd', 'Province': 'ON', 'City': 'Toronto'}
Shared Values {'Canada', 'ON', 'Toronto'}
Sample Run 2 (with import):
import lab4c
dict_york = {'Address': '70 The Pond Rd', 'City': 'Toronto', 'Country': 'Canada', 'Postal Code': 'M3J3M6', 'Province': 'ON'}
dict_newnham = {'Address': '1750 Finch Ave E', 'City': 'Toronto', 'Country': 'Canada', 'Postal Code': 'M2J2X5', 'Province': 'ON'}
list_keys = ['Address', 'City', 'Country', 'Postal Code', 'Province']
list_values = ['70 The Pond Rd', 'Toronto', 'Canada', 'M3J3M6', 'ON']

york = create_dictionary(list_keys, list_values)

print(york)
# Will print: {'Address': '70 The Pond Rd',
               'City': 'Toronto',
               'Country': 'Canada',
               'Postal Code': 'M3J3M6',
               'Province': 'ON'}

common = shared_values(dict_york, dict_newnham)

print(common)
# Will print: {'Canada', 'ON', 'Toronto'}
3. Download the checking script and check your work. Enter the following commands from the bash shell.
cd ~/ops435/lab4/
pwd #confirm that you are in the right directory
ls CheckLab4.py || wget https://raw.githubusercontent.com/Seneca-CDOT/ops435/master/LabCheckScripts/CheckLab4.py
python3 ./CheckLab4.py -f -v lab4c
4. Before proceeding, make certain that you identify all errors in lab4c.py. When the checking script tells you everything is OK proceed to the next step.

INVESTIGATION 2: STRINGS

Strings are basically a list of characters (bits of text). Strings store text so that they can be later for manipulation (by a wide range of functions). This section will investigate strings in more detail such as cutting strings into sub-strings, joining strings, formatting strings, searching through strings, and matching strings against patterns.

Strings are immutable data objects - this means that once a string is created, it cannot be modified. In order to make a change inside a string, you would first make a copy of the part of the string (i.e. sub-string) for manipulation.

PART 1 - Strings and Substrings

This first part will explain basic concepts of using strings, printing strings, and manipulating sub-strings.
Perform the Following Steps:
  1. Launch the ipython3 shell
    ipython3
  2. Issue the following to create strings:
    course_name = 'Open System Automation'
    course_code = 'OPS435'
    course_number = '435'
    Strings can contain any characters inside them, whether they are letters, numbers, or symbols. In our ipython3 shell the values inside each string variable can be seen just by typing the string variable name. However, when writing python scripts, these string variables should be placed inside print() functions in order to display on the screen.

    Strings can also be concatenated (i.e. "combined together") by using the + sign, just make sure string are only concatenating other strings(no lists, no numbers, no dictionaries, etc.).

  3. To demonstrate what was previously mentioned, issue the following:
    course_name
    course_code
    course_number
    print(course_name)
    print(course_code)
    print(str(course_number))
    print(course_name + ' ' + course_code + ' ' + str(course_number))
    Strings can also use special syntax for string repetition by multiplying the string by a number. This will repeat that string that many times. Repetition with * is useful whenever a string needs to be repeated more than once

  4. Issue the following:
    print(course_name + '-' + course_code)
    print(course_name + '-'*5 + course_code)
    print(course_name + '-'*25 + course_code)
    print('abc'*2)
    print(course_code*5)
    When using the print() function, you can display special characters. One such special character is the is the newline character (denoted by the symbol: \n). This allows you to separate content between new lines or empty lines.

  5. To demonstrate, issue the following:
    print('Line 1\nLine 2\nLine 3\n')
  6. By using both string repetition and a newline character, multiple lines can be created at once. Issue the following:
    print('Line 1' + '\n'*4 + 'Line 5\nLine 6')
  7. Strings have many built-in functions that we can use to manipulate text. Let's take a look at the strings name space and the available functions:
    dir(course_name)
    help(course_name)
  8. Lets try out several different functions. Refer back to the help() function for more information, these are quick ways to view strings in different ways. Issue the following:
    course_name.lower()         # Returns a string in lower-case letters
    course_name.upper()         # Returns a string in upper-case letters
    course_name.swapcase()      # Returns a string with upper-case and lower-case letters swapped
    course_name.title()         # Returns a string with upper-case first letter of each word, lowercase for remaining text
    course_name.capitalize()    # Returns a string with upper-case first letter only, lowercase for remaining text
  9. These values can be saved inside new strings and then reused:
    lower_name = course_name.lower()    # Save returned string lower-case string inside new string variable
    print(lower_name)
  10. If a string contains many values separated by a single character, such as a space, the string can be split on those values and create a list of values
    lower_name.split(' ')       # Provide the split() function with a character to split on
    The above example will return a list of strings, which we can access just like all of lists.

  11. Let's practice more string manipulation by issuing the following:
    list_of_strings = lower_name.split(' ')     # Split string on spaces and store the list in a variable
    list_of_strings                             # Display list
    list_of_strings[0]                          # Display first item in list
    Since lists are actually a list of strings, you should be able to use any function that works with a string on a list.

  12. To demonstrate, issue the following:
    list_of_strings[0].upper()           # Use the function after the index to affect a single string within a list
    first_word = list_of_strings[0]
    first_word
    print(first_word)
    The index that is used to access items within a list, can also be used to access characters within a string. For practice, let's create a new string, and start accessing the strings index.

  13. Issue the following:
    course_name = 'Open System Automation'
    course_code = 'OPS435'
    course_number = 435
    course_code[0]                          # Return a string that is the first character in course_code
    course_code[2]                          # Return a string that is the third character in course_code
    course_code[-1]                         # Return a string that is the last character in course_code
    str(course_number)[0]                   # Turn the integer into a string, return first character in that string
    course_code[0] + course_code[1] + course_code[2]
    You can use a technique that uses index numbers of a string to cut-out or "parse" smaller portions of text within a string. This term is referred to as a substring. We can use this to create a new string or display only a small portion of it

  14. To demonstrate, issue the following:
    course_name[0:4]                        # Return the first four characters (values of index numbers 0,1,2, and 3) 
    first_word = course_name[0:4]           # Save this substring for later use
    course_code[0:3]                        # Return the first three characters (values of index numbers 0,1,and 2)
  15. The index allows a few extra functions using the same parsing technique:
    course_name = 'Open System Automation'
    course_name[12:]                        # Return the substring '12' index until end of string
    course_name[5:]                         # Return the substring '5' index until end of string
    course_name[-1]                         # Return the last character
    With negative indexes, -1 index would represent the last character, -2 index would represent the second last character, etc.

  16. To demonstrate, issue the following:
    course_name = 'Open System Automation'
    course_name[-1]
    course_name[-2]
  17. Issue the following to practice some of the skills that you have learned in this section:
    course_name = 'Open System Automation'
    course_name[-10:]                                   # Return the last ten characters
    course_name[-10:-6]                                 # Try and figure out what this is returning 
    course_name[0:4] + course_name[-10:-6]              # Combine substrings together
    substring = course_name[0:4] + course_name[-10:-6]  # Save the combined substring as a new string for later
    substring
  18. The real power found in substrings goes beyond just manually writing index values and getting back words. The next part of this investigation will cover how to search through a string for a specific word, letter, number, and return the index to that search result.

Create a Python Script Demostrating Substrings

Perform the Following Instructions
  1. Create the ~/ops435/lab4/lab4d.py script. The purpose of this script is to demonstrate creating and manipulating strings. There will be four functions each will return a single string.
  2. Use the following template to get started:
    #!/usr/bin/env python3
    # Strings 1
    
    str1 = 'Hello World!!'
    str2 = 'Seneca College'
    
    num1 = 1500
    num2 = 1.50
    
    def first_five():
        # Place code here - refer to function specifics in section below
    
    def last_seven():
        # Place code here - refer to function specifics in section below
    
    def middle_number():
        # Place code here - refer to function specifics in section below
    
    def first_three_last_three():
        # Place code here - refer to function specifics in section below
    
    
    if __name__ == '__main__':
        print(first_five(str1))
        print(first_five(str2))
        print(last_seven(str1))
        print(last_seven(str2))
        print(middle_number(num1))
        print(middle_number(num2))
        print(first_three_last_three(str1, str2))
        print(first_three_last_three(str2, str1))
  • The script should contain four functions (use your own argument names):
first_five():
  1. Accepts a single string argument
  2. Returns a string that contains the first five characters of the argument given
last_seven():
  1. Accepts a single string argument
  2. Returns a string that contains the last seven characters of the argument given
middle_number():
  1. Accepts a integer as a argument
  2. Returns a string containing the second and third characters in the number
first_three_last_three():
  1. Accepts two string arguments
  2. Returns a single string that starts with the first three characters of argument1 and ends with the last three characters of argument2
  • Example: first_three_last_three('abcdefg', '1234567') returns single string 'abc567'
Sample Run 1
run lab4d.py 
Hello
Senec
World!!
College
50
.5
Helege
Send!!
Sample Run 2(import)
import lab4d
str1 = 'Hello World!!'
str2 = 'Seneca College'
num1 = 1500
num2 = 1.50
lab4d.first_five(str1)
'Hello'
lab4d.first_five(str2)
'Senec'
lab4d.last_seven(str1)
'World!!'
lab4d.last_seven(str2)
'College'
lab4d.middle_number(num1)
'50'
lab4d.middle_number(num2)
'.5'
lab4d.first_three_last_three(str1, str2)
'Helege'
lab4d.first_three_last_three(str2, str1)
'Send!!'
3. Exit the ipython3 shell, download the checking script and check your work. Enter the following commands from the bash shell.
cd ~/ops435/lab4/
pwd #confirm that you are in the right directory
ls CheckLab4.py || wget matrix.senecac.on.ca/~acoatley-willis/CheckLab4.py
python3 ./CheckLab4.py -f -v lab4d
4. Before proceeding, make certain that you identify any and all errors in lab4d.py. When the checking script tells you everything is OK before proceeding to the next step.


LAB 4 SIGN-OFF (SHOW INSTRUCTOR)

Students should be prepared with all required commands (system information) displayed in a terminal (or multiple terminals) prior to calling the instructor for signoff.


Have Ready to Show Your Instructor:
Output of: ./CheckLab4.py -f -v
Output of: cat lab4a.py lab4b.py lab4c.py lab4d.py

LAB REVIEW

  1. What is the purpose of a tuple? How does a tuple differ from a list?
  2. How do you define elements within a tuple?
  3. Write Python code to confirm if the string 'OPS435' exists within the tuple called courses.
  4. What is the purpose of a set? How do sets differ from lists or tuples?
  5. How do you define elements within a set?
  6. Assuming you have defined two sets called set1 and set2. Write Python code to:
    1. Return a set containing all values of both sets
    2. Returns a set containing all values in set1 that are not found in set2
    3. Return a set containing all values that both sets DO NOT share
  7. What is the purpose of a dictionary?
  8. How do you define elements within a dictionary?
  9. Write Python commands to display for a dictionary called my_dictionary the dictionary key called my_key and a dictionary value for that key?
  10. What is the purpose for the range(), len(), append(), and map() functions for a dictionary?
  11. List and briefly explain the following functions (methods) that can be used with strings:
    lower() , upper() , swapcase() , title() , captilize() , split()
  12. Assume you issued the following command in your ipython3 shell:
    course_name = 'Programming with Python'
    What will be the output for each of the following Python commands?
    1. course_name[3:11]
    2. course_name[10:]
    3. course_name[-1]