Difference between revisions of "Fall 2017 SPO600 Weekly Schedule"
Chris Tyler (talk | contribs) (→Week x1) |
Chris Tyler (talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 44: | Line 44: | ||
|- | |- | ||
− | |x9||Dec 4||[[#Week | + | |x9||Dec 4||[[#Week x9 - Class I|Project: Building, Benchmarking, and Profiling]]||[[#Week x9- Class II|Project Hacking]]||[[#Week x9 Deliverables|Blog about your project.]] |
|- | |- | ||
− | |x10||Dec 11||[[#Week | + | |x10||Dec 11||[[#Week x10 - Class I|Project Hacking]]||[[#Week x10 - Class II|Project Hacking - End of Stage I]]||[[#Week x10 Deliverables|Blog about your project, including Stage I report.]] |
|- | |- | ||
− | |x11||Dec 18||[[#Week | + | |x11||Dec 18||[[#Week x11 - Class I|Project Hacking]]||[[#Week 11 - Class II|Project Hacking]]||[[#Week X11 Deliverables|Blog about your project.]] |
|- | |- | ||
− | |x12||Jan 1||style="background: #f0fff0"|(New Year's Day - No class)||[[#Week | + | |x12||Jan 1||style="background: #f0fff0"|(New Year's Day - No class)||[[#Week x12 - Class II|Project Hacking]]||[[#Week x12 Deliverables|Blog about your project.]] |
|- | |- | ||
− | |x13||Jan 8||[[#Week | + | |x13||Jan 8||[[#Week x13 - Class I|Wrap-Up Discussion; end of project Stage II.]]||style="background: #f0f0ff"|(Course finished)||[[#Week x13 Deliverables|Blog about your project, including the final/Stage II report, and write a wrap-up post about the course.]] |
|- | |- | ||
Line 275: | Line 275: | ||
=== Week x8 - Class II === | === Week x8 - Class II === | ||
− | * Inline Assembler (Lab 7) | + | * [[Inline Assembly Language]] |
+ | * [[SPO600 Inline Assembler Lab|Inline Assembler Lab]] (Lab 7) | ||
=== Week x8 Deliverables === | === Week x8 Deliverables === | ||
* Blog about your Lab 7 results | * Blog about your Lab 7 results | ||
+ | |||
+ | |||
+ | == Week x9 == | ||
+ | |||
+ | === Week x9 - Class I === | ||
+ | |||
+ | * Benchmarking and Profiling | ||
+ | ** Notes to follow | ||
+ | |||
+ | === Week x9 - Class II === | ||
+ | |||
+ | * [[Fall 2017 SPO600 Project]] | ||
+ | |||
+ | === Week x9 Deliverables === | ||
+ | |||
+ | * Start blogging about your project! | ||
<!-- ################################################################################### | <!-- ################################################################################### |
Latest revision as of 09:58, 6 December 2017
This is the schedule and main index page for the SPO600 Software Portability and Optimization course for Winter 2017.
Contents
Schedule Summary Table
This is a summary/index table. Please follow the links in each cell for additional detail which will be added below as the course proceeds -- especially for the Deliverables column.
Evaluation
Category | Percentage | Evaluation Dates |
---|---|---|
Communication | 20% | End of September (5%), End of November (Dec 3 - 7.5%), end of course (Jan 8 - 7.5%). |
Quizzes | 10% | May be held during any class, usually at the start of class. A minimum of 5 one-page quizzes will be given. No make-up/retake option is offered if you miss a quiz. Lowest 3 scores will not be counted. |
Labs | 10% | See deliverables column above. All labs must be submitted by Jan 8. |
Project work | 60% | 2 stages: 20% (Dec 14) / 40% (Jan 8). |
Week 1
There is no "Class I" during this first week due to Labour Day.
Week 1 - Class II
Introduction to the Problems
Porting and Portability
- Most software is written in a high-level language which can be compiled into machine code for a specific computer architecture. In many cases, this code can be compiled for multiple architectures. However, there is a lot of existing code that contains some architecture-specific code fragments written in Assembly Language (or, in some cases, machine-specific high-level code).
- Reasons for writing code in Assembly Langauge include:
- Performance
- Atomic Operations
- Direct access to hardware features, e.g., CPUID registers
- Most of the historical reasons for including assembler are no longer valid. Modern compilers can out-perform most hand-optimized assembly code, atomic operations can be handled by libraries or compiler intrinsics, and most hardware access should be performed through the operating system or appropriate libraries.
- A new architecture has appeared: AArch64, which is part of ARMv8. This is the first new computer architecture to appear in several years (at least, the first mainstream computer architecture).
- At this point, most key open source software (the software typically present in a Linux distribution such as Ubuntu or Fedora, for example) now runs on AArch64. However, it may not run as well as on older architectures (such as x86_64).
Benchmarking and Profiling
Benchmarking involves testing software performance under controlled conditions so that the performance can be compared to other software, the same software operating on other types of computers, or so that the impact of a change to the software can be gauged.
Profiling is the process of analyzing software performance on finer scale, determining resource usage per program part (typically per function/method). This can identify software bottlenecks and potential targets for optimization.
Optimization
Optimization is the process of evaluating different ways that software can be written or built and selecting the option that has the best performance tradeoffs.
Optimization may involve substituting software algorithms, altering the sequence of operations, using architecture-specific code, or altering the build process. It is important to ensure that the optimized software produces correct results and does not cause an unacceptable performance regression for other use-cases, system configurations, operating systems, or architectures.
The definition of "performance" varies according to the target system and the operating goals. For example, in some contexts, low memory or storage usage is important; in other cases, fast operation; and in other cases, low CPU utilization or long battery life may be the most important factor. It is often possible to trade off performance in one area for another; using a lookup table, for example, can reduce CPU utilization and improve battery life in some algorithms, in return for increased memory consumption.
Most advanced compilers perform some level of optimization, and the options selected for compilation can have a significant effect on the trade-offs made by the compiler, affecting memory usage, execution speed, executable size, power consumption, and debuggability.
Build Process
Building software is a complex task that many developers gloss over. The simple act of compiling a program invokes a process with five or more stages, including pre-proccessing, compiling, optimizing, assembling, and linking. However, a complex software system will have hundreds or even thousands of source files, as well as dozens or hundreds of build configuration options, auto configuration scripts (cmake, autotools), build scripts (such as Makefiles) to coordinate the process, test suites, and more.
The build process varies significantly between software packages. Most software distribution projects (including Linux distributions such as Ubuntu and Fedora) use a packaging system that further wraps the build process in a standardized script format, so that different software packages can be built using a consistent process.
In order to get consistent and comparable benchmark results, you need to ensure that the software is being built in a consistent way. Altering the build process is one way of optimizing software.
Note that the build time for a complex package can range up to hours or even days!
General Course Information
- Course resources are linked from the CDOT wiki, starting at http://wiki Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in. Click here if you have trouble logging in..cdot.senecacollege.ca/wiki/index.php/SPO600 (Quick find: This page will usually be Google's top result for a search on "SPO600").
- Coursework is submitted by blogging.
- Quizzes will be short (1 page) and will be held without announcement at any time, generally at the start of class. Your lowest three quiz scores will not be counted, so do not worry if you miss one or two.
- Course marks (see Weekly Schedule for dates):
- 60% - Project Deliverables
- 20% - Communication (Blog and Wiki writing)
- 20% - Labs and Quizzes (10% labs - completed/not completed; 10% for quizzes - lowest 3 scores not counted)
- All classes will be held in an Active Learning Classroom -- you are encouraged to bring your own laptop to class. If you do not have a laptop, consider signing one out of the Learning Commons for class, or using a smartphone with an HDMI adapter.
- For more course information, refer to the SPO600 Weekly Schedule (this page), the Course Outline, and SPO600 Course Policies.
Discussion of how open source communities work
- Background for the Code Review Lab (Lab 1).
Week 1 Deliverables
- Course setup:
- Set up your SPO600 Communication Tools - in particular, set up a blog and add it to Planet CDOT (via the Planet CDOT Feed List).
- Add yourself to the Fall 2017 SPO600 Participants page (leave the projects columns blank).
- Generate a pair of keys for SSH and email the public key to your professor, so that he can set up your access to the SPO600_Servers class servers.
- Sign and return the Open Source Professional Option Student Agreement (this will be done on paper in class).
- Complete Labs
- Code Review Lab (Lab 1) (Due end of week 2)
- Optional (recommended): Set up a personal Fedora system.
- Optional: Purchase an AArch64 development board (such as a 96Boards HiKey or Raspberry Pi 2/3).
Week 2
, processor intern, processor internals, instruction set architecture]]||als, instruction set architecture||[[#Week 2 - Class II|
Week 2 - Class I
- Binary Representation of Data
- Numbers
- Integers
- Fixed-point numbers
- Floating-point numbers
- Characters
- ASCII
- ISO8859-1
- Unicode
- Encoding schemes
- EBCDIC
- Images
- Sound
- Numbers
- Computer Architecture overview (see also the Computer Architecture Category)
- A first look at the x86_64 and AArch64 Architectures and ISA
- Register file comparison
- Instruction encoding
- ELF
- Procedure calling conventions
Reference
- Computer Architecture and Computer Architecture Category
- Aarch64 Register and Instruction Quick_Start
- x86_64 Register and Instruction Quick_Start
Week 2 - Class II
Week 2 Deliverables
- Blog your conclusion to the Code Review Lab (Lab 1)
- Blog the results and conclusion from the Compiled C Lab (Lab 2)
Week 3
Week 3 - Class I
Week 3 - Class II
- Complete Lab 3.
- Code Building Lab (Lab 4)
Week 3 Deliverables
- Complete and blog your results, conclusions, and reflections on the Assembler Lab (Lab 3).
Week 4
- Complete and blog your results, conclusions, and reflections on the Code Building Lab (Lab 4).
Week 5
Week 5 - Class I
Week 5 - Class II
- Introduction to Vector Processing/SIMD
- Vectorization Lab (Lab 5)
Week 5 Deliverables
- Blog your results for the Vectorization Lab (Lab 5) -- be sure to include links to your code, detailed results, and your reflection on the lab.
Week 6
Week 6 - Class II
- Algorithm Selection Lab (Lab 6)
Week 6 Deliverables
- Blog your results for the Algorithm Selection Lab (Lab 6) -- be sure to include links to your code, detailed results, and your reflection on the lab.
Week x8
Week x8 - Class I
- Review
- Plans for Remainder of Term
Week x8 - Class II
Week x8 Deliverables
- Blog about your Lab 7 results
Week x9
Week x9 - Class I
- Benchmarking and Profiling
- Notes to follow
Week x9 - Class II
Week x9 Deliverables
- Start blogging about your project!