Difference between revisions of "OPS235 Lab 3 - CentOS7"
Line 185: | Line 185: | ||
'''Answer the Investigation 5 observations / questions in your lab log book.''' | '''Answer the Investigation 5 observations / questions in your lab log book.''' | ||
+ | |||
+ | = Storage Setup (prior to starting Lab 4) = | ||
+ | |||
+ | At this point, having completed [[OPS235 Lab 3 - CentOS6|Lab 3]] you should have <u>'''roughly'''</u> the following disk storage setup:<br /> | ||
+ | ('''Note:''' These results are output from the '''vgs''', '''lvs''', and '''pvs''' commands within each virtual machine. You will be using these commands in the following lab investigations)<br /><br /> | ||
+ | |||
+ | * '''centos1''' | ||
+ | |||
+ | This VM has a GUI and no free space in the VG. | ||
+ | |||
+ | VG #PV #LV #SN Attr VSize VFree | ||
+ | vg_centos1 1 2 0 wz--n- 9.80G 0 | ||
+ | |||
+ | LV VG Attr LSize | ||
+ | lv_root vg_centos1 -wi-ao 8.83G | ||
+ | lv_swap vg_centos1 -wi-ao 992.00M | ||
+ | |||
+ | PV VG Fmt Attr PSize PFree | ||
+ | /dev/vda2 vg_centos1 lvm2 a- 9.80G 0 | ||
+ | |||
+ | * '''centos2''' | ||
+ | |||
+ | This VM has a GUI and free space in the VG. | ||
+ | |||
+ | VG #PV #LV #SN Attr VSize VFree | ||
+ | vg_centos2 1 4 0 wz--n- 19.51g 4.73g | ||
+ | |||
+ | LV VG Attr LSize | ||
+ | lv_archive vg_centos2 -wi-ao---- 1.00g | ||
+ | lv_home vg_centos2 -wi-ao---- 4.00g | ||
+ | lv_root vg_centos2 -wi-ao---- 7.81g | ||
+ | lv_swap vg_centos2 -wi-ao---- 1.97g | ||
+ | |||
+ | PV VG Fmt Attr PSize PFree | ||
+ | /dev/vda2 vg_centos2 lvm2 a-- 19.51g 4.73g | ||
+ | |||
+ | * '''centos3''' | ||
+ | |||
+ | This VM has no GUI installed. | ||
+ | |||
+ | VG #PV #LV #SN Attr VSize VFree | ||
+ | vg_centos3 2 3 0 wz--n- 16.50g 0 | ||
+ | |||
+ | LV VG Attr LSize | ||
+ | lv_home vg_centos3 -wi-ao---- 1.00g | ||
+ | lv_root vg_centos3 -wi-ao---- 10.00g | ||
+ | lv_swap vg_centos3 -wi-ao---- 992.00m | ||
+ | |||
+ | PV VG Fmt Attr PSize PFree | ||
+ | /dev/vda3 vg_centos3 lvm2 a-- 14.51g 2.54g | ||
+ | /dev/vdb vg_centos3 lvm2 a-- 2.00g 2.00g | ||
+ | |||
+ | * '''c6host (i.e. "disk pack")''' | ||
+ | |||
+ | /dev/sdc3 20G 3.7G 15G 20% / | ||
+ | /dev/sdc2 29G 4.7G 23G 18% /home | ||
+ | /dev/sdc1 97G 48G 45G 52% /var/lib/libvirt/images | ||
+ | |||
+ | = Logical Volume Management (Continued) = | ||
+ | |||
+ | {{Admon/note|Recovering VMs|'''Most of these investigations will take place in you virtual machines.''' If you make a significant mistake, your virtual machine may not boot. Remember that you created backups of your virtual machines in Lab 3, and you can '''restore them if something goes wrong'''.}} | ||
+ | |||
+ | == Resources == | ||
+ | |||
+ | Please read this page to get an overview of LVM: | ||
+ | [http://zenit.senecac.on.ca/wiki/index.php/Logical_Volume_Management Logical Volume Management] | ||
+ | |||
+ | It is recommended to open another window(eg. '''right-click''', '''open in new tab or window''') to make reference to view LVM commands as you perform investigations 1 to 3. | ||
+ | |||
+ | == Investigation 1: How are LVMs are managed using Command-Line Tools == | ||
+ | # You are going to repeat the same LVM management operations (as your did with the ''centos2'' VM in '''lab3'''), but you will using command-line tools in the '''centos3''' VM. Since the centos3 VM only operates in command-line mode, you will need to refer to the '''"Logical Volume Management"''' link above. | ||
+ | # Write down the exact commands used at each step, and record appropriate command output: | ||
+ | :: a. Determine the current LVM configuration using the <code>pvs</code>, <code>vgs</code>, and <code>lvs</code> commands. | ||
+ | :: b.Grow the home filesystem to 2G using the command <code>lvextend</code> and <code>resize2fs</code>. | ||
+ | :: c.Create a new 2G LV containing an ext4 filesystem and mount it at /archive (use <code>mkdir</code>, <code>lvcreate</code>, <code>mkfs</code>, <code>mount</code>, edit the file <code>/etc/fstab</code> (read the resource: [https://wiki.archlinux.org/index.php/fstab https://wiki.archlinux.org/index.php/fstab] ), and then reboot to confirm automatic mount). | ||
+ | :: d.Copy the contents of <code>/etc</code> into <code>/archive</code>. | ||
+ | :: e.Shrink <code>lv_archive</code> to 1G (use <code>umount</code>, <code>resize2fs</code>, <code>lvreduce</code>, and <code>mount</code>) | ||
+ | |||
+ | == Investigation 2: How can a PV be added to an existing VG using Command-Line Tools? == | ||
+ | # Add an additional 2 GB virtual disk to your ''<u>centos1</u>'' system, we will use it as an additional physical volume. | ||
+ | # Do the rest of this investigation in the command line. | ||
+ | # You should now have both <code>/dev/vda</code> and <code>/dev/vdb</code>. | ||
+ | # Record the size of the volume group and the amount of free space (Hint: use a command that you learned in a previous lab). | ||
+ | # Read the resource [http://tldp.org/HOWTO/Partition/fdisk_partitioning.html Partitioning with fdisk] to learn how to properly create a partition with the fdisk command. | ||
+ | # Use fdisk to partition /dev/vdb with a Linux single partition that fills the whole disk. | ||
+ | # Check the messages printed when <code>fdisk</code> exits -- you may need to reboot the system in order for the new partition table to take effect. | ||
+ | # Mark ''vdb1'' as a physical volume usable by LVM. | ||
+ | # Add the new physical volume to the existing volume group. | ||
+ | # Verify that the volume group is larger and has more free space. | ||
+ | |||
+ | {{Admon/note|Think!|The next part of this investigation requires some research, thought, and creativity.}} | ||
+ | '''Using that additional space, create a separate filesystem for <code>/home</code>:''' | ||
+ | # Create the logical volume <code>lv_home</code> (1G ext4) | ||
+ | # Find a way to move the contents of <code>/home</code> onto it. | ||
+ | # Change your system configuration so that the new filesystem is mounted on <code>/home</code> from now on. | ||
+ | |||
+ | {{Admon/tip|SELinux relabelling may be required|Your system may report that the files are not present in the new /home filesystem when they are clearly there. This is due to the Security-Enhanced Linux system (SELinux) preventing access to the files, because the files were tampered with (moved) and are no longer recognized as home directory content. You can fix this problem by restoring the file context labels so that SELinux accepts the files as valid home directory content: <code>restorecon -r /home</code>}} | ||
+ | |||
+ | == Investigation 3: How can I use fdisk to manage storage on my disk pack? == | ||
+ | '''On your <u>c6host</u> (i.e. "disk pack"), using your choice of the GUI and/or command-line tools:''' | ||
+ | # Create a new partition or logical drive ('''NOT a logical volume!''') - minimum 5G, leaving at least 10G free space in the extended partition. | ||
+ | # Format that partition (i.e. put a filesystem on it). | ||
+ | # Make sure it's mounted automatically on a mountpoint of your choosing (easiest is to create a new directory for a mountpoint). | ||
= Updated backup instructions = | = Updated backup instructions = |
Revision as of 07:21, 28 March 2015
Contents
Logical Volume Management and Software Package Management
Introduction
In this lab you're going to:
- Learn how to add and remove software packages on your different Linux systems.
- Learn how to properly adjust your various Linux file systems by using and managing LVM both graphically (centos2) as well as command line (centos3).
Required Materials (Bring to All Labs)
- CentOS 6.5 x86_64 Live DVD
- CentOS 6.5 x86_64 Installation DVD1
- SATA Hard Disk (in removable disk tray)
- USB Memory Stick
- Lab Logbook
Prerequisites
- Completion and Instructor "Sign-off" of Lab 2: OPS235 Lab 2 - CentOS6
Linux Command Online Reference
Each Link below displays online manpages for each command (via http://linuxmanpages.com):
LVM Information Utilities: | LVM Management Utilities: | Additional Utilities: |
Resources on the web
Additional links to tutorials and HOWTOs:
Please read this page to get an overview of LVM:
- Logical Volume Management (Note: It is recommended to return to this guide as a reference when performing the next several investigations)
- Using the RPM Utility
- Using the YUM Utility
Logical Volume Management (Introduction)
Check Current LVM Information Prior to Performing Investigations
LVM (Logical Volume Management) is used to manage hard disk drives / partitions for Unix/Linux systems. LVM provides more flexibility than just working with hard disks / hard disk partitions. Volume Groups are areas used to define Physical Volumes (i.e. hard disks, disk partitions, or other forms of storage devices). Logical Volumes are then used to relate directories (mount points) to a specific physical volume or for a "range" or "span" of physical volumes.
Therefore, LVM allows more flexibility and growth potential for Linux systems (for example, having Logical volumes span multiple hard disks). CentOS uses LVM by default upon installation. Other Linux distributions may provide the capacity to install LVM, or later install and then use Logical Volume Management.
Although the concept of LVM is simple, it takes practice and preparation (or "thinking ahead") in order to correctly use this valuable tool. It is important for students to gain an understanding of LVM, and how to manage their filesystems using LVM. It is recommended for students to read the following resource prior to this lab and/or return to the following resource while performing this lab: Logical Volume Management
At this point, having completed Lab 2 you should have roughly the following disk storage setup:
(Note: These results are output from the vgs, pvs, and lvs commands that provide volume group, physical volume and logical volume information for each of the virtual machines that you created in lab2. Before proceeding, check these values with your own system to see if you are generally "on the right track".)
- centos1
VG #PV #LV #SN Attr VSize VFree vg_centos1 1 2 0 wz--n- 9.50g 0
PV VG Fmt Attr PSize PFree /dev/vda3 vg_centos1 lvm2 a-- 9.50g 0
LV VG Attr LSize Origin Snap% Move Log Copy% Convert lv_root vg_centos1 -wi-ao 8.03g lv_swap vg_centos1 -wi-ao 1.47g
- centos2
VG #PV #LV #SN Attr VSize VFree vg_centos2 1 3 0 wz--n- 19.51g 7.77g
PV VG Fmt Attr PSize PFree /dev/vda2 vg_centos2 lvm2 a-- 19.51g 7.77g
LV VG Attr LSize Pool Origin Data% Move Log Cpy%Sync Convert lv_home vg_centos2 -wi-ao---- 1.95g lv_root vg_centos2 -wi-ao---- 7.81g lv_swap vg_centos2 -wi-ao---- 1.97g
- centos3 (Note: This VM has no GUI installed)
VG #PV #LV #SN Attr VSize VFree vg_centos3 1 3 0 wz--n- 14.51g 4.54g
PV VG Fmt Attr PSize PFree /dev/vda3 vg_centos3 lvm2 a-- 14.51g 4.54g
LV VG Attr LSize Origin Snap% Move Log Copy% Convert lv_home vg_centos3 -wi-ao---- 1.00g lv_root vg_centos3 -wi-ao---- 8.00g lv_swap vg_centos3 -wi-ao---- 992.00m
- c6host (i.e. "removable hard disk" or "disk pack")
Does not use LVM. Confirm this using the same commands used above.
Investigation 4: Extend the size of lv_root using command-line tools
Perform this investigation in centos3.
Let's say that you have run out of disk space on your computer (centos3), you need more space on the root filesystem, perhaps to host more webpages or a larger database or new software. What are your options? Getting a replacement harddrive would probably require reinstallation of the operating system and backup/restore of the data.
Because we're using LVM though - we can avoid that. We can add a new harddrive (which will serve as a physical volume) to the volume group, and extend the root logical volume to make use of the new available space.
Perform the following operations to increase the size of lv_root in centos3:
Steps:
- Run the following commands and make note of the output:
- Open the centos3 virtual machine console
- Go to the hardware details view
- Click "Add Hardware" and add a new storage device of 2GBs, make sure it's a VirtIO disk.
- Go back to the console view
- Run the same ls command (performed in step 1), what's changed?
- Now we'll make the new device as a physical volume, add it to the volume group, and extend lv_root:
- Now rerun the ls/pvs/vgs/lvs/df commands. What has changed and what caused those changes?
- Among the changes, note that your root filesystem is now 2GB bigger - and you have not even rebooted your machine!
ls /dev/vd*
pvs
vgs
lvs
df -h
pvcreate /dev/vdb
vgextend vg_centos3 /dev/vdb
lvextend -L +2G -r vg_centos3/lv_root
Answer the Investigation 4 observations / questions in your lab log book.
Investigation 5: How is LVM managed using system-config-lvm?
Perform this investigation on the VM named centos2.
- Let's learn to administer (manage) our LVM graphically for our centos2 Virtual Machine.
CentOS provides a tool calledsystem-config-lvm
to graphically administer LVM. The package is not installed by default, so you will need to install it by issuing: (yum install system-config-lvm
).
- Use this tool to determine the current LVM configuration by clicking on the appropriate element and reading the properties in the right-hand panel -- write down the answers:
- What are the names and sizes of the PVs?
- What is the name and size of the VG?
- What are the names and sizes of the LVs?
- Is there any space in the VG which is not allocated to a LV?
- Increase the size of the home file-system to 4 GB:
- Click on the LV containing the home filesystem.
- Click on Edit Properties.
- Change the size to 4 GB and click Ok.
- Create a new 3G LV (LV Properties: linear) containing an ext4 filesystem named lv_archive and mount it at /archive
- Backup
/etc
into/archive
- Copy the files in /etc into the filesystem mounted at
/archive
(use the graphical tools or the command line. If using cp, remember to use the -R option).
- Copy the files in /etc into the filesystem mounted at
- Shrink the size of
lv_archive
to 1 GB. - Try shrinking the home file-system. What happens? Why?
Answer the Investigation 5 observations / questions in your lab log book.
Storage Setup (prior to starting Lab 4)
At this point, having completed Lab 3 you should have roughly the following disk storage setup:
(Note: These results are output from the vgs, lvs, and pvs commands within each virtual machine. You will be using these commands in the following lab investigations)
- centos1
This VM has a GUI and no free space in the VG. VG #PV #LV #SN Attr VSize VFree vg_centos1 1 2 0 wz--n- 9.80G 0 LV VG Attr LSize lv_root vg_centos1 -wi-ao 8.83G lv_swap vg_centos1 -wi-ao 992.00M PV VG Fmt Attr PSize PFree /dev/vda2 vg_centos1 lvm2 a- 9.80G 0
- centos2
This VM has a GUI and free space in the VG. VG #PV #LV #SN Attr VSize VFree vg_centos2 1 4 0 wz--n- 19.51g 4.73g LV VG Attr LSize lv_archive vg_centos2 -wi-ao---- 1.00g lv_home vg_centos2 -wi-ao---- 4.00g lv_root vg_centos2 -wi-ao---- 7.81g lv_swap vg_centos2 -wi-ao---- 1.97g PV VG Fmt Attr PSize PFree /dev/vda2 vg_centos2 lvm2 a-- 19.51g 4.73g
- centos3
This VM has no GUI installed. VG #PV #LV #SN Attr VSize VFree vg_centos3 2 3 0 wz--n- 16.50g 0 LV VG Attr LSize lv_home vg_centos3 -wi-ao---- 1.00g lv_root vg_centos3 -wi-ao---- 10.00g lv_swap vg_centos3 -wi-ao---- 992.00m PV VG Fmt Attr PSize PFree /dev/vda3 vg_centos3 lvm2 a-- 14.51g 2.54g /dev/vdb vg_centos3 lvm2 a-- 2.00g 2.00g
- c6host (i.e. "disk pack")
/dev/sdc3 20G 3.7G 15G 20% / /dev/sdc2 29G 4.7G 23G 18% /home /dev/sdc1 97G 48G 45G 52% /var/lib/libvirt/images
Logical Volume Management (Continued)
Resources
Please read this page to get an overview of LVM: Logical Volume Management
It is recommended to open another window(eg. right-click, open in new tab or window) to make reference to view LVM commands as you perform investigations 1 to 3.
Investigation 1: How are LVMs are managed using Command-Line Tools
- You are going to repeat the same LVM management operations (as your did with the centos2 VM in lab3), but you will using command-line tools in the centos3 VM. Since the centos3 VM only operates in command-line mode, you will need to refer to the "Logical Volume Management" link above.
- Write down the exact commands used at each step, and record appropriate command output:
- a. Determine the current LVM configuration using the
pvs
,vgs
, andlvs
commands. - b.Grow the home filesystem to 2G using the command
lvextend
andresize2fs
. - c.Create a new 2G LV containing an ext4 filesystem and mount it at /archive (use
mkdir
,lvcreate
,mkfs
,mount
, edit the file/etc/fstab
(read the resource: https://wiki.archlinux.org/index.php/fstab ), and then reboot to confirm automatic mount). - d.Copy the contents of
/etc
into/archive
. - e.Shrink
lv_archive
to 1G (useumount
,resize2fs
,lvreduce
, andmount
)
- a. Determine the current LVM configuration using the
Investigation 2: How can a PV be added to an existing VG using Command-Line Tools?
- Add an additional 2 GB virtual disk to your centos1 system, we will use it as an additional physical volume.
- Do the rest of this investigation in the command line.
- You should now have both
/dev/vda
and/dev/vdb
. - Record the size of the volume group and the amount of free space (Hint: use a command that you learned in a previous lab).
- Read the resource Partitioning with fdisk to learn how to properly create a partition with the fdisk command.
- Use fdisk to partition /dev/vdb with a Linux single partition that fills the whole disk.
- Check the messages printed when
fdisk
exits -- you may need to reboot the system in order for the new partition table to take effect. - Mark vdb1 as a physical volume usable by LVM.
- Add the new physical volume to the existing volume group.
- Verify that the volume group is larger and has more free space.
Using that additional space, create a separate filesystem for /home
:
- Create the logical volume
lv_home
(1G ext4) - Find a way to move the contents of
/home
onto it. - Change your system configuration so that the new filesystem is mounted on
/home
from now on.
Investigation 3: How can I use fdisk to manage storage on my disk pack?
On your c6host (i.e. "disk pack"), using your choice of the GUI and/or command-line tools:
- Create a new partition or logical drive (NOT a logical volume!) - minimum 5G, leaving at least 10G free space in the extended partition.
- Format that partition (i.e. put a filesystem on it).
- Make sure it's mounted automatically on a mountpoint of your choosing (easiest is to create a new directory for a mountpoint).
Updated backup instructions
If you completed this lab correctly - please make sure you are still making full backups of your virtual machines.
Remember adding a new harddrive to centos3? You will need to back up that drive as well. If you don't - you will only have half of your machine backed up, which is of no use for a recovery.
Completing the lab
Notes:
- rpm command options
- yum command options
- How to use pvs/vgs/lvs/df/pvcreate/vgextend/lvextend
- Answer to this question "What is the license of the nautilus package?"
Arrange evidence for each of these items on your screen, then ask your instructor to review them and sign off on the lab's completion:
- elinks application removed on the host (disk pack - main system c6host).
- Unnecessary/unused packages have been deleted (list at least 4, and show that they are no longer installed).
- Fresh backup of the virtual machines.
Preparing for Quizzes
- What is a VG? PV? LV?
- What commands are used to determine VG / PV / LV information?
- What does yum do that rpm does not?
- List the steps to install a package via rpm command.
- List the steps to determine detailed information regarding an install package.
- List the steps to remove a package via rpm command.
- List the steps to install a package using the yum command.
- List the steps to remove a package using the yum command.
- What is the total size of the "main" VG on your system?
- How do you create a LV?
- How do you delete an LV?
- How would you increase the size of the root filesystem by 50 MB?