
DPS915 Presentation Ray Tracing Parallelization

Soutrik Barua • Faiq Malik

Assignment 1

Sudoku Ray Tracing

Assignment 2

Porting code for CUDA
CPU vs CPU+GPU execution times

Assignment 3

Further optimization Final analysis and conclusion

Ray Tracing

What is Ray Tracing?

Rendering Technique for generating an image by tracing the path of light.
Simulating the effects of its trajectory path with virtual objects.

Practical applications

To calculate and simulate path of particles and waves.

Optical Lens Design

Acoustics

Radio Signal Propagation

Astrophysics

many more

Progress

Accomplishments

Optimized code for CUDA enabled device

Decreased run time

Enhanced image processing speed

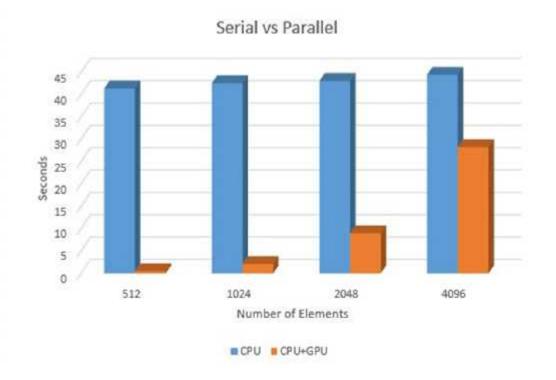
GPU runtimes by Image Resolution

Image Resolution at 512

✓ Duration	
Session	14.60954 s (14,609,536,991 ns)
Kernel	463.41086 ms (463,410,864 ns)
Invocations	1000
Importance	100%

Image Resolution at 1024

✓ Duration	
Session	32.9139 s (32,913,900,315 ns)
Kernel	2.09468 s (2,094,680,206 ns)
Invocations	1000
Importance	100%


Image Resolution at 2048

✓ Duration	
Session	53.8341 s (53,834,097,514 ns)
Kernel	8.95988 s (8,959,877,324 ns)
Invocations	1000
Importance	100%

Image Resolution at 4096

90.60231 s (90,602,309,669 ns)	
28.24141 s (28,241,410,701 ns)	
1000	
100%	
Doubles.	
	28.24141 s (28,241,410,701 ns) 1000

CPU vs GPU

Potential Ways to Optimize Further

Use more available bandwidth

Have better memcpy efficiency

Better compute overlap

More use of cores depending on GPU/compute capability

Reduce memory access times.

End of Presentation

Questions?